Полную замкнутую цепь (рис.1) можно рассматривать как последовательное соединение сопротивления внешней цепи (R) и внутреннего сопротивления источника тока (r). То есть:

Если заменить источник тока таким, что его внутренне сопротивление равно такому же сопротивлению как и у предыдущего, то ток в цепи изменится. То есть ток в цепи зависит и от внутреннего сопротивления источника и от его ЭДС. Количественно все эти величины: ЭДС ($\mathcal E$) источника, его внутренне сопротивление, силу тока в цепи (I), электросопротивление цепи (R) связывает закон Ома.

Связь локального закона Ома с интегральным законом для замкнутой цепи

Допустим, что электрические токи текут в тонких проводах. В этом случае направления токов совпадают с направлением оси провода. Для тонких проводов можно считать, что плотность тока $\overrightarrow{j}=const$ в любой точке поперечного сечения провода. В нашем случае можно записать, что сила тока равна:

где $S$ -- площадь поперечного сечения проводника. Пусть мы имеем дело с постоянным током (I=const) вдоль всего проводника. Допустим, что в цепи присутствует источник ЭДС ($\mathcal E$). В данном случае локальная формулировка закона Ома будет иметь вид:

где $\overrightarrow{E}$ напряженность поля кулоновских сил, $\overrightarrow{E_{stor}}$ -- напряженность поля сторонних сил, $\sigma $ -- удельная проводимость, $\overrightarrow{e}$- единичный вектор, направленный по току. Для тонкого провода можно записать выражение (3), как:

Умножим выражение (4) на элемент длины проводника (dl) и найдем интеграл по участку проводника от точки 1 до точки 2. Так как силу тока мы признали постоянной, то имеем:

Электростатическое поле потенциально, следовательно:

Второй интеграл в выражении (5) не равен нулю только в пределах источника ЭДС. Он не зависит от положения точек 1 и 2. Они должны находиться только вне источника.

Считают, что ЭДС источника больше нуля, если путь 1-2 пересекает источник от отрицательного полюса к положительному.

где $R"$ -- электросопротивление, $\rho $ -- удельное сопротивление. Таким образом, из выражения (5) получаем:

Мы получили закон Ома в интегральной форме. В том случае, если цепь замкнута, то ${\varphi }_1={\varphi }_2$, следовательно:

где $R"$ -- электросопротивление всей цепи, электросопротивление нагрузки и внутреннее сопротивление источника тока. То есть закон Ома для замкнутой цепи запишем как:

где $r$ -- электросопротивление источника тока.

Довольно часто приходится решать задачи, в которых напряжение на концах участка цепи не известно, но заданы сопротивления составных частей цепи и ЭДС источника, который питает цепь. Тогда используют закон Ома в виде (11) для расчета силы тока, которая течет в цепи.

Пример 1

Задание: Источник тока имеет внутреннее электросопротивление равное r . Найдите падение потенциала внутри источника ($U_r$) внутри элемента, если ток в цепи равен I. Как вычислить внешнее электросопротивление цепи при заданных условиях?

В качестве основы для решения задачи используем закон Ома для замкнутой цепи:

Из формулы (1.1) легко получить формулу для расчета внешнего сопротивления:

Для того чтобы вычислить падение напряжения внутри источника тока, используем закон Ома для участка цепи:

\[{I=\frac{U_r}{r}\to U}_r=Ir\ \left(1.2\right).\]

Ответ: $U_r=Ir,$ $R=\frac{\mathcal E}{I}-r.$

Пример 2

Задание: Источник тока имеет внутреннее сопротивление равное r=1 Ом и ЭДС равную $\mathcal E$=10В. Найдите КПД источника ($\eta $), если ток в цепи равен I=5 А.

Коэффициент полезного действия источника тока равен отношению:

\[\eta =\frac{P"}{P}\left(2.1\right),\]

где $P"$ - мощность (полезная мощность), которая выделяется внешним участком цепи, $P$- полная мощность, которая развивается источником. При этом:

\ \

Следовательно, КПД источника можно выразить как:

\[\eta =\frac{I^2R\ }{\mathcal E I}=\frac{IR}{\mathcal E}\left(2.4\right).\]

Следуя закону Ома для замкнутой цепи запишем:

Выразим из (2.5) электросопротивление внешней цепи, получим:

Подставим (2.6) в выражение для КПД (2.4), получим:

\[\eta =\frac{I\left(\frac{\mathcal E}{I}-r\right)}{\mathcal E}=\frac{\mathcal E-Ir}{\mathcal E}.\]

Подставим численные данные, проведем вычисления, получим:

\[\eta =\frac{10-5\cdot 1}{10}\cdot 100\%=50\%\]

Соединенный проводами с различными электроприборами и потребителями электри-ческой энергии, образует электрическую цепь.

Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления , источники тока, включатели, лампы, при-боры и т. д.) обозначены специальными значками.

Направление тока в цепи — это направление от положи-тельного полюса источника тока к отрицательному. Это пра-вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус-ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен-ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря-да — положительные или отрицательные.

Включение элементов в электрическую цепь может быть последовательным или параллельным .

Закон Ома для полной цепи.

Рассмотрим электрическую цепь, состоящую из источника тока и ре-зистора R .

Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоя-щим из внешнего сопротивления R и внутреннего сопротивления источ-ника тока r .

Работа сторонних сил A ст источника тока, согласно определению ЭДС (ɛ ) равна A ст = ɛq , где q — заряд , перемещенный ЭДС. Согласно определе-нию тока q = It , где t — время, в течение которого переносился заряд. Отсюда имеем:

A ст = ɛ It .

Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца , равно:

Q = I 2 Rt + I 2 rt .

Согласно закону сохранения энергии А = Q . Приравнивая (A ст = ɛ It ) и (Q = I 2 Rt + I 2 rt ), получим:

ɛ = IR + Ir.

Закон Ома для замкнутой цепи обычно записывается в виде:

.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Если цепь содержит несколько последовательно соединенных ис-точников с ЭДС ɛ 1 , ɛ 2 , ɛ 3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.

Сторонние силы внутри источника совершают при этом по-ложительную работу . И наоборот, для цепи справедливо следующее уравнение:

ɛ = ɛ 1 + ɛ 2 + ɛ 3 = | ɛ 1 | - | ɛ 2 | -| ɛ 3 | .

В соответствии с сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:

R n = R + r 1 + r 2 + r 3 .

Закон Ома для замкнутой цепи показывает - значение тока в реальной цепи зависит не только от сопротивления нагрузки, но и от сопротивления источника.

Формулировка закона Ома для замкнутой цепи звучит следующим образом: величина тока в замкнутой цепи, состоящей из источника тока, обладающего внутренним и внешним нагрузочным сопротивлениями, равна отношению электродвижущей силы источника к сумме внутреннего и внешнего сопротивлений.

Впервые зависимость тока от сопротивлений была экспериментально установлена и описана Георгом Омом в 1826 году.

Формула закона Ома для замкнутой цепи записывается в следующем виде:

  • I [А] – сила тока в цепи,
  • ε [В] – ЭДС источника напряжения,
  • R [Ом] – сопротивление всех внешних элементов цепи,
  • r [Ом] – внутреннее сопротивление источника напряжения

Физический смысл закона

Потребители электрического тока вместе с источником тока образуют замкнутую электрическую цепь. Ток, проходящий через потребитель, проходит и через источник тока, а значит, току кроме сопротивления проводника оказывается сопротивление самого источника. Таким образом, общее сопротивление замкнутой цепи будет складываться из сопротивления потребителя и сопротивления источника.

Физический смысл зависимости тока от ЭДС источника и сопротивления цепи заключается в том, что чем больше ЭДС, тем больше энергия носителей зарядов, а значит больше скорость их упорядоченного движения. При увеличении сопротивления цепи энергия и скорость движения носителей зарядов, следовательно, и величина тока уменьшаются.

Зависимость можно показать на опыте. Рассмотрим цепь, состоящую из источника, реостата и амперметра. После включения в цепи идет ток, наблюдаемый по амперметру, двигая ползунок реостата, увидим, что при изменении внешнего сопротивления ток будет меняться.

Примеры задач на применение закона Ома для замкнутой цепи

К источнику ЭДС 10 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 4 Ом. Найти силу тока в цепи и напряжение на зажимах источника.

При подключении к батарее гальванических элементов резистора сопротивлением 20 Ом сила тока в цепи была 1 А, а при подключении резистора сопротивлением 10 Ом сила тока стала 1,5 А. Найти ЭДС и внутреннее сопротивление батареи.

Если точки 1 и 2 совпадают, то и выражение закона Ома для участка приобретает более простой вид:

где представляет собой полное сопротивление замкнутой цепи включая внутреннее сопротивление источников, а - алгебраическую сумму э.д.с. в данной цепи.

Ток, возникающий при внешнем сопротивлении равном нулю, называется током короткого замыкания.

Лекция 10.

Соединение проводников.

Используя закон Ома для участка цепи, можно показать, что сопротивление последовательного и параллельного соединения проводников равны соответственно:

Доказательство:

Отметим, что при параллельном соединении проводников, общее сопротивление всегда меньше наименьшего сопротивления в параллельном соединении. Убедитесь в этом самостоятельно.

Закон Джоуля - Ленца.

При прохождении тока через проводник сопротивлением выделяется теплота, которая рассеивается в окружающей среде. Найдем это количество теплоты. Воспользуемся для этого законом сохранения энергии и законом Ома.

Рассмотрим однородный участок цепи, на котором поддерживается постоянная разность потенциалов . Электрическое поле при этом совершает работу:

Если на участке отсутствует превращение в механическую, химическую или иные виды энергии кроме тепловой, то выделяющее количество теплоты равно работе электрического поля:

.

Тепловая мощность при этом равна:

Конечное количество теплоты находится интегрированием по времени:

Это формула выражает закон Джоуля – Ленца. Механизм тепловыделения связан с превращением дополнительной кинетической энергии, которую приобретают носители тока в электрическом поле, в энергию возбуждения колебаний решетки при столкновении носителей с атомами в узлах решетки.

Найдём выражение для закона Джоуля – Ленца в локальной форме. Для этой цели выделим в проводнике элементарный объём в форме цилиндра с образующей вдоль вектора . Пусть поперечное сечение цилиндра , а его длина . Тогда согласно закону Джоуля – Ленца в этом объеме за время выделяется количество теплоты:

где - объём цилиндра. Разделив последнее соотношение на получим формулу которая определяет тепловую мощность, выделяющуюся в единице объёма проводника:

Удельная тепловая мощность измеряется в .

Полученное соотношение выражает закон Джоуля – Ленца в локальной форме: удельная тепловая мощность тока пропорциональна квадрату плотности тока и удельному сопротивлению проводника в данной точке.

В такой форме закон Джоуля – Ленца применим к неоднородным проводникам любой формы, и не зависят от природы сторонних сил. Если на носители действуют только электрические силы, то на основании закона Ома :

Если участок цепи содержит источник э.д.с., то на носители тока будут действовать не только электрические, но и сторонние силы. В этом случае тепло, которое выделяется на участке, равно алгебраической сумме работ электрических и сторонних сил.

Умножим закон Ома в интегральной форме на силу тока :

Здесь слева стоит (тепловая мощность), а справа алгебраическая сумма мощностей электрических и сторонних сил, которую называютмощностью тока.

В замкнутой цепи :

т.е. мощность тепловыделения равна мощности сторонних сил.

Дифференциальный закон Ома

В

ыделим из массива проводника (по которому протекает электрический токI ) маленький цилиндр расположенный вдоль линий электрического тока в проводнике Рис.5.2. Пусть длина цилиндра будет dl а сечение dS . Тогда

О

тсюда

И

спользуя определение для плотности тока (5.1) и для проводимости проводника (5.4) получаем окончательно выражение, которое получило название дифференциальный закон Ома

Работа и мощность, производимые электрическим током

При перемещении заряда между точками с некоторой разностью потенциалов соответствующей падению напряжения U производится работа и мощность:

Э

тот закон был получен экспериментально и получил название закон Джоуля – Ленца. Если подобно предыдущему случаю перейти к рассмотрению малых объемов то нетрудно получить закон Джоуля – Ленца в дифференциальной форме (5.6-5.8):

Законы Кирхгофа

Первое правило Кирхгофа

Рассмотрим электрическую цепь имеющую разветвления Рис.5.3. Точки разветвления будем называть узлами. При установившемся процессе, когда электрический ток протекающий по цепи постоянен потенциалы всех точек цепи так же неизменны. Это может происходить в том случае если электрические заряды не накапливаются и не исчезают в узлах цепи.

Таким образом при установившемся режиме количество притекшего электричества к узлу равно количеству электричества ушедшего из узла. Отсюда вытекает первое правило Кирхгофа:

Алгебраическая сумма сил электрических токов сходящихся в узле равна нулю (5.9) (токи приходящие в узел берутся со знаками +, а токи отходящие от узла со знаком -)

I1+i2+i3-i4-i5=0

ΣI i =0 5.9.

Соединения проводников

На практике часто приходится пользоваться различным соединением проводников

П оследовательное соединение Рис.5.4.

П

ри таком соединении электрический ток во всех участках цепи и на всех ее элементах одинаковI = I 1 = I 2 = I 3 =… I n . Напряжение на концах цепи между точками А и В складывается из напряжений на каждом ее элементе U AB = U 1 + U 2 + U 3 +… U n . Таким образом.

Параллельное соединение Рис.5.5


Закон Ома для замкнутой цепи содержащей э.Д.С.

Р ассмотрим неразветвленную электрическую цепь содержащую Э.Д.С.(E ) с внутренним сопротивлением r и содержащую внешнее сопротивление R Рис.5.6

Полная работа по перемещению заряда по всему контуру будет складываться из работы во внешней цепи и работы внутри источника А=А внешн источн .

Причем работа во внешней цепи отнесенная к величине заряда это по определению разность потенциалов на внешней цепи (падение напряжения на внешней цепи) А внешн / q = U . А работа, по всей цепи отнесенная к заряду это по определению Э.Д.С. A / q = E . Отсюда E = U + А источн / q . С другой стороны А источн = I 2 rt . Отсюда А источн / q = Ir . Таким образом окончательно получаем: E = U + Ir

Или E = I (R + r ) 5.12

Под E подразумевается сумма всех Э.Д.С. входящих в неразветвленную цепь, а под r и R подразумевается сумма всех внутренних и внешних сопротивлений в неразветвленной цепи.

Сила тока одинаковая для всей неразветвленной замкнутой цепи содержащей Э.Д.С. прямо пропорциональна Э.Д.С. и обратно пропорциональна полному сопротивлению цепи.

Второе правило Кирхгофа

Рассмотрим разветвленную цепь Рис.5.7. Участок между двумя соседними узлами назовем ветвью. Так как разветвление имеет место лишь в соседних узлах, то в пределах ветви сила тока сохраняется по величине и направлению. Любую цепь можно рассматривать как совокупность контуров, а для каждого контура справедливо:

В любом замкнутом контуре, мысленно выделенном из электрической цепи алгебраическая сумма произведений сопротивлений соответствующих участков цепи, включая и внутренние сопротивления источников на силу тока в цепи равна алгебораической сумме всех Э.Д.С. в цепи

Закон Ома для замкнутой цепи

Если в проводнике создать электрическое поле и не принять мер для его поддержания, то перемещение зарядов очень быстро приведет к тому, что поле внутри проводника исчезнет и ток прекратится, поэтому для поддержания постоянного тока в течение длительного времени необходимо выполнение двух условий: электрическая цепь должна быть замкнутой; в электрической цепи наряду с участками, на которых положитель-

ные заряды движутся в сторону убывания потенциала, должны быть участки, на которых эти заряды движутся в сторону возрастания потенциала, т. е. против сил электростатического поля (см. изображенную штриховой линией часть цепи на рис. 5).

Перемещать положительные заряды против сил электростатического поля могут только силы неэлектростатического происхождения, называемые сторонними силами. Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) e , действующей в цепи или на ее участке. ЭДС e измеряется в вольтах (В). Источник ЭДС имеет некоторое внутреннее сопротивление , зависящее от его устройства. Это сопротивление оказывается включенным последовательно с источником в общую электрическую цепь. В качестве источников ЭДС используют гальванические элементы и генераторы постоянного тока (рис. 6).

Если неразветвленная замкнутая электрическая цепь (рис. 7) содержит несколько последовательно соединенных элементов с сопротивлением и источников ЭДС e к , имеющих внутреннее сопротивление то ее можно заменить эквивалентной цепью, изображенной на рис. 6. Сила тока в эквивалентной цепи определяется законом Ома для замкнутой цепи:

;

ЭДС, как и сила тока, есть величина алгебраическая. Если ЭДС способствует движению положительных зарядов в выбранном направлении, то e > 0, если ЭДС препятствует движению положительных зарядов в данном направлении, то e < 0. Чтобы определить знак ЭДС, необходимо показать в электрической цепи направление движения положительных зарядов. Положительные заряды в электрической цепи движутся от положительного полюса источника к отрицательному полюсу. Если по ходу этого направления перейти внутри источника от отрицательного полюса к положительному, то e > 0, если перейти внутри источника от положительного полюса к отрицательному, то e < 0.


Рис. 6 Рис. 7

Из закона Ома для замкнутой цепи следует, что падение напряжения U на зажимах источника меньше, чем ЭДС. Действительно, e , или e . Так как по закону Ома для однородного участка цепи напряжение на зажимах источника , то

3) используя закон Ома для замкнутой цепи, установить связь между силой тока и ЭДС.

Подскажите закон ома

Зако́н Ома - это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.
Так случилось, что в этом разделе страницы оказалось две словесных формулировки закона Ома:
1. Суть закона проста: если, при прохождении тока, напряжение и свойства проводника не изменяются, то
сила тока в проводнике прямо пропорциональна напряжению между концами проводника и обратно пропорциональна сопротивлению проводника.
2. Закон Ома формулируется так: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка.
Следует также иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. , также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Пользователь удален

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы) , пропорциональна напряжению U на концах проводника:

где R = const.
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
В СИ единицей электрического сопротивления проводников служит ом (Ом) . Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:
IR = U12 = φ1 – φ2 + E = Δφ12 + E.
Это соотношение принято называть обобщенным законом Ома.
На этом рис. изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.

По закону Ома,
IR = Δφcd.
Участок (ab) содержит источник тока с ЭДС, равной E.
По закону Ома для неоднородного участка,
Ir = Δφab + E.
Сложив оба равенства, получим:
I(R + r) = Δφcd + Δφab + E.
Но Δφcd = Δφba = – Δφab.
Поэтому

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Little prince

В интегральной форме: i=L*U | L-электропроводность, 1/R
В дифференциальной форме: j=A*E | A- электропроводность среды, j- плотность тока
Для замкнутого контура: i= E/(r+R) | уже приводили.. .
Для переменных токов: uo=io*sqrt (r^2 + (w*L -1/w*C)^2) |uo io - амплитуды тока и напряжения, r- активное сопротивление цепи, что в скобках и в квадрате - реактивная составляющая, sqrt = корень квадратный....

Оля семенова

Зако́н О́ма - эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Замкнутая цепь содержит: источник тока, сопротивления (потреби тока), приборы для контроля характеристик тока, провода, ключ. Приме может служить цепь, приведенная на рис.5. По отношению к источнику можно выделит внешнюю цепь, содержащую элементы, находящиеся данного источника, если проследить за током от одной его клеммы другой, и внутреннюю, к которой относят проводящую среду внутри источника обозначим сопротивление внешней цепи через R , внутреннее сопротивление источника r . Тогда ток в цепи определяется по закону для замкнутой цепи, который гласит, что ток в замкнутой цепи прямо пропорционален величине ЭДС и обратно пропорционален сумме внутреннего и внешнего сопротивления цепи, т.е.

Из этого закона вытекают следующие частные случаи:

Если R стремится к нулю (т.е. R << r ), то ток I стремится к максимально

возможному значению I к.з = , называемому током короткого

замыкания. Этот ток опасен для источников, поскольку вызывает перегрев источника и необратимые изменения проводящей среды внутри него.

Если R стремится к бесконечно большой величине (т.е. при условии, что R >> r ), ток I уменьшается, и падение напряжения внутри источника Ir становится намного меньше IR , следовательно IR . Значит, величину ЭДС источника можно практически измерить с помощью вольтметра, присоединенного к клеммам источника при условии, что сопротивление вольтметра R V >> r при разомкнутой внешней цепи.

Распределение энергии при работе источника постоянного тока

Пусть источник постоянного тока имеет ЭДС и внутреннее

сопротивление r и замкнут на сопротивление внешней нагрузки R .

Проанализируем несколько величин, характеризующих распределение энергии при работе источника постоянного тока.

а) Затраченная источником мощность Р.

Работа, совершаемая сторонними силами в замкнутой цепи по

перемещению заряда dq , равна:

dA = dq (9)

Исходя из определения, мощность, развиваемая сторонними силами в

источнике, равна:

(10)

Эта мощность расходуется источником во внешней и внутренней по отношению к источнику частях цепи. Используя закон Ома для замкнутой цепи, можно затраченную мощность представить в виде:

Если сопротивление нагрузки R уменьшается, стремясь к нулю, то Р зат P max = Если R увеличивается, стремясь в бесконечность, то Р зат . График зависимости затраченной сторонними силами мощности Р зат от величины внешнего сопротивления R показан на рисунке 5.

б) Полезная мощность Р под : _

Полезной по отношению к источнику мощностью Р под считается мощность, расходуемая источником во внешней цепи, т.е. на внешней нагрузке. Она равна:

Пользуясь законом Ома для замкнутой цепи, или заменив в последнем выражении I на /(R + r ), можно представить в виде

(13)

Если числитель и знаменатель этого выражения разделить на R , то получится выражение

(13a)

наглядно демонстрирующее то, что Р пол стремится к нулю как при уменьшении R до нуля, так и при его бесконечном увеличении, т.к. в обоих случаях знаменатель этого выражения стремится к бесконечности. Это означает, что при некотором оптимальном значении R полезная мощность достигает максимального значения

Определить оптимальное значение R , а также и значение , можно, приравняв нулю первую производную функции Р поя = f (R ) пo R :

(14)

Как видно, полученное равенство соблюдается при условии