В городе Колумбусе, что расположен в штата Огайо, с отцом и его женой Кэтти Миссинг, жил бойскаут Дэвид Хан . Выходные проводил в соседнем штате с матерю. На десятилетие юному бойскауту подарили «Золотую книгу химических экспериментов».

Химия захватила Дэвида, через два года он взялся за университетские учебники отца и соорудил в своей спальне настоящую химическую лабораторию. В 13 лет он изготовил порох, в 14 нитроглицерин. Тут, как и положено, произошел взрыв, никто не пострадал, но спальня была разрушена практически полностью. После отцовской порки остатки лаборатории ликвидировали, но у Дэвида была запасная площадка, оборудованная в сарае у мамы, в Цинциннати (город на границе трех штатов Кентукки, Огайо, Индиана). Там-то и развернулись основные события.

Потом отец Дэвида винил во всем организацию бойскаутов и непомерное честолюбие сына, который во что бы то ни стало хотел получить высший знак отличия — Скаутского Орла. Но для этого требовалось совершить что-то экстраординарное и полезное. 10 мая 1991 года четырнадцатилетний Дэвид Хан сдал своему скаутмастеру Джо Ауито брошюру о проблемах ядерной энергетики, написанную для получения очередного скаутского значка. При ее подготовке Дэвид обращался за помощью в Вестингхаусское электрическое и Американское ядерное общества, в Эдисоновский электрический институт, а также в компании, занимающиеся управлением атомными электростанциями. И везде встречал понимание и искреннюю поддержку. В качестве дополнения к брошюре прилагалась модель ядерного реактора, сделанная из алюминиевой пивной банки, вешалки для одежды, соломинок для колы и резинок.

Однако для кипящей души бойскаута все это было слишком мелко, и следующим этапом своей работы он выбрал строительство настоящего, пусть и миниатюрного, ядерного реактора. Как и положено, серьезное дело началось с покупки инструмента: по почте был заказан гейгеровский счетчик, который Дэвид установил на свой «Понтиак-6000» и отправился по окрестностям в поисках радиоактивных материалов. Не найдя ничего достойного внимания, он сменил тактику и, составив список подходящих организаций, стал рассылать десятки писем в день. В них он представлялся школьным учителем и просил оказать информационную помощь по вопросам ядерной физики. К прежним адресатам добавились Министерство энергетики США, Комиссия по ядерному регулированию и другие учреждения. В ответ он получил горы информации, большей частью бесполезной, но некоторые организации все же оказали юному ядерщику поистине неоценимые услуги. Так, начальник отдела производства и распределения радиоизотопов Комиссии по ядерному регулированию Дональд Эрб сразу проникся глубокой симпатией к «профессору Хану» и вступил с ним в длительную научную переписку.

Спустя неполных четыре месяца Дэвид знал, как в самых обыденных вещах найти 14 разных радиоактивных изотопов. Например, америций-241 применялся в датчиках задымления, радий-226 — в старых часах со светящимися стрелками, торий-232 — в сетках-рассекателях газовых фонарей, а уран-235 встречался в черной руде (pitchblend).
Его выбор пал на америций-241, при распаде которого испускаются энергичные альфа-частицы — ядра гелия. В компании, поставляющей датчики дыма, он приобрел сотню бракованных устройств по доллару за штуку якобы для школьного проекта, а заодно узнал, что крошечное количество америция в них, во избежание утечек, запаяно в маленьких золотых капсулах. Дэвид извлек америций, поместил его в свинцовый корпус с небольшим отверстием в одной из стенок, которое закрыл алюминиевой фольгой. Алюминий захватывает альфа-частицы и испускает нейтроны — получается нейтронная пушка, под воздействием которой многие элементы могут становиться радиоактивными. Для проверки она была направлена на кусок парафина, и счетчик Гейгера зарегистрировал выбитые нейтронами протоны. Так Дэвид Хан убедился в работоспособности своего второго ядерного инструмента.

Теперь дело было за топливом для реактора. Оптимальным вариантом казался уран-235. Удалось даже заполучить кусок урановой руды: его в качестве образца прислала «профессору Хану» чехословацкая фирма, поставлявшая урановые препараты университетам. Однако, несмотря на все усилия, Дэвиду не удалось очистить уран, содержавшийся в руде. Тогда он переключился на другой изотоп — торий-232, который при облучении нейтронами превращается в радиоактивный уран-233. На складе уцененных товаров бойскаут приобрел около тысячи сеток-рассекателей для газовых фонарей с тугоплавким ториевым покрытием. Паяльной лампой он пережег их в золу. Затем, накупив на 1000 долларов литиевых батареек, кусачками извлек литий, смешал его с золой и нагрел. Литий отобрал из золы кислород, и Дэвид получил относительно чистый торий. Оставалось только направить на него нейтронный луч и ждать, когда образуется уран.

Однако мощности «нейтронной пушки» явно не хватало, и Дэвид решил усовершенствовать ее, заменив америций радием. Сначала он просто скупал старые часы и приборы со светящимися стрелками и счищал с них краску. Но однажды гейгеровский счетчик навел его на старинные часы, в которых «завалялся» целый пузырек с радиевой краской. Для очистки радия Дэвид использовал сульфат бария, который талантливому юноше подарили в рентгенологическом отделении соседнего госпиталя. Смешав барий с краской, он расплавил получившийся состав и пропустил его через кофейный фильтр. Барий абсорбировал примеси и застрял в фильтре, а радий, растворившись в воде, прошел через него беспрепятственно. Высушив жидкость, Дэвид поместил выпавший радиевый осадок в свинцовый контейнер. Отверстие, через которое вылетали альфа-частицы, он прикрыл уже не алюминием, а бериллием, украденным его приятелем из университетской лаборатории. Кстати, о преимуществах бериллия еще в самом начале работы ему рассказал все тот же Дональд Эрб.

Под воздействием новой нейтронной пушки радиоактивность тория стала постепенно расти, а значит, в нем пошли ядерные превращения. Но вот уран на облучение почти не реагировал. И вновь на помощь пришел Дональд Эрб, подсказавший, что нейтроны слишком энергичны для захвата ядрами урана. Для их замедления лучше всего подходил сверхтяжелый водород — тритий. Он применялся в ночных прицелах для спортивных охотничьих луков, и Дэвид под разными именами заказывал их себе, соскабливал тритий и возвращал изделия с претензиями к качеству. С тритиевым замедлителем дело явно пошло на лад.
Теперь наступила очередь создания самого реактора. Дэвид держал в голове весьма современную идею реактора бридерного типа, в котором по мере расхода топлива испускаемые им нейтроны нарабатывают новое топливо в окружающем реактор слое. Америций и радий были без всякой заботы о безопасности извлечены из своих свинцовых «пушек», смешаны с алюминиевым и бериллиевым порошком и завернуты в алюминиевую фольгу. Получилось ядро импровизированного реактора, во все стороны пышущее нейтронами. Этот шар Дэвид в несколько слоев обернул одеялом, содержащим кубики ториевой золы и урановой руды и обмотал снаружи толстым слоем скотча.

Конечно, «реактор» был далек от совершенства. Но его ионизирующее излучение уверенно росло — за три недели оно увеличилось вдвое. Реактор стал понемногу нагреваться, и вскоре гейгеровский счетчик начинал трещать уже в сотне метров от подпольной лаборатории. Только тогда юноша понял, что игра зашла слишком далеко и пора «завязывать». Он разобрал свой реактор, сложил уран и торий в ящик для инструментов, радий и америций оставил в подвале, а все сопутствующие материалы решил вывезти в лес и захоронить. Погрузкой, во избежание ненужных вопросов, он занялся глухой ночью. Помешал делу полицейский наряд, заинтересовавшийся, что это в такой час грузит в машину подозрительный подросток. В багажнике полицейские обнаружили массу странных вещей: запаянные свинцовые трубки, сломанные часы, провода, ртутные выключатели, фонарные корпуса, химические реактивы и около 50 завернутых в фольгу упаковок с неизвестным порошком. Среди всего этого выделялся закрытый на замок ящик, тщательно завернутый в некое подобие свинцового пончо. Открыть его Дэвид отказался, признавшись, что содержимое ящика сильно радиоактивно.

Какой реакции можно было ожидать? В три часа ночи в офис окружной полиции пришло сообщение о том, что местным нарядом задержана машина с взрывным устройством, предположительно — с ядерной бомбой. Надо сказать, это было не так уж далеко от истины. Создать полноценный ядерный заряд — дело все-таки сложное и дорогое, а вот собрать или наработать радиоактивных элементов, а потом распылить их с помощью обычного взрыва, как это случилось на Чернобыльской АЭС, — посильная задача даже для школьника, что и показал Дэвид Хан в своих экспериментах.
Спустя почти год после ареста Дэвида представители Агентства по охране окружающей среды добились судебного решения о сносе сарая-лаборатории. Его демонтаж и захоронение на свалке радиоактивных отходов обошлось родителям «радиоактивного бойскаута» в 60 000 долларов. Сам Дэвид после колледжа завербовался в армию и служил сержантом на атомном авианосце ВМФ США «Энтерпрайз». Правда, зная о его хобби, к ядерному реактору его близко не подпускали. «Я уверен, что своими опытами отнял у себя не больше пяти лет жизни, — сказал он как-то журналисту. — Поэтому у меня еще есть время сделать для людей что-нибудь полезное».

В 2007 году Дэвид Хан был вновь арестован полицией за воровство детекторов дыма...


Вы знаете, чем занимается ваш сын по вечерам? Тогда, когда он говорит, что пошел на дискотеку, или на рыбалку, или на свидание? Нет, я далек от мысли, что он колется, или пьет портвейн с дружками, или грабит запоздалых прохожих, все это было бы слишком заметно. Но как знать, может, он собирает в сарае ядерный реактор...

На въезде в городок Голф-Манор, что в 25 км от Детройта, штат Мичиган, висит большой плакат, на котором аршинными буквами написано: "У нас много детей, но мы их все равно экономим, поэтому, водитель, двигайся осторожней". Предупреждение абсолютно излишнее, поскольку чужие здесь появляются чрезвычайно редко, а местные и так особо не гоняют: на полутора километрах, а именно такова протяженность центральной улицы города, особо не разгонишься.

Конечно, сотрудники Агентства по защите окружающей среды (EPA), когда планировали начало зачистки заднего двора частного владения мистера Майкла Поласека и миссис Патти Хан на час ночи, руководствовались вполне разумными соображениями. В такое позднее время жители провинциального городка должны были спать, а поэтому разобрать и вывезти сарай миссис Хан со всем его содержимым можно было, не вызывая лишних вопросов и не создавая паники, которую обычно навевают на гражданское население контейнеры со значком: "Осторожно, радиация!" Но из каждого правила бывают исключения. На этот раз им стала соседка миссис Хан -- Дотти Пеас. Загнав свой автомобиль в гараж, она вышла на улицу и увидела, что во дворе напротив копошатся одиннадцать одетых в радиозащитные серебристые скафандры человек.

Взволнованная Дотти, разбудив мужа, заставила его пойти к рабочим и выяснить, чем они там занимаются. Мужчина нашел старшего и потребовал от него объяснений, в ответ на что услышал, что волноваться нет причин, что ситуация находится под контролем, радиационное заражение невелико и опасности для жизни не представляет.

Под утро рабочие погрузили в контейнеры последние блоки сарая, сняли верхний слой почвы, погрузили все свое добро на грузовики и покинули место действия. На вопросы соседей миссис Хан и мистер Поласек отвечали, что они и сами не знают, чем вызван такой интерес к их сараю со стороны EPA. Постепенно жизнь в городе вошла в нормальное русло, и, если бы не дотошные журналисты, возможно, так никто бы никогда и не узнал, чем так досадил сотрудникам EPA сарай Патти Хан.

До десяти лет Дэвид Хан рос как обычный американский подросток. Его родители, Кен и Патти Хан, были в разводе, Дэвид жил с отцом и его новой женой Кэтти Миссинг недалеко от Голф-Манора, в городке Клинтон. По выходным Дэвид ездил в Голф-Манор к матери. У той были свои проблемы: ее новый избранник сильно пил, а поэтому ей было особо не до сына. Пожалуй, единственным человеком, кто сумел понять душу подростка, оказался его сводный дед, отец Кэтти, который и подарил юному бойскауту на десятилетний юбилей толстую "Золотую книгу химических экспериментов".

Книга была написана простым языком, в ней в доступной форме рассказывалось, как оборудовать домашнюю лабораторию, как сделать искусственный шелк, как получить спирт и так далее. Дэвид настолько увлекся химией, что уже спустя два года принялся за отцовские институтские учебники.

Родители были рады новому увлечению сына. Между тем Дэвид соорудил в своей спальне весьма приличную химическую лабораторию. Мальчик взрослел, эксперименты становились все смелее, в тринадцать лет он уже свободно изготовлял порох, а в четырнадцать дорос до нитроглицерина.

К счастью, сам Дэвид при экспериментах с последним почти не пострадал. Зато спальня была разрушена практически полностью: окна вылетели, встроенный шкаф вмят в стену, обои и потолок безнадежно испорчены. В качестве наказания отец подверг Дэвида порке, а лабораторию, или, вернее, то, что от нее осталось, пришлось перенести в подвал.

Тут мальчик развернулся вовсю. Тут его уже никто не контролировал, тут он мог ломать, взрывать и крушить столько, сколько требовалось его химической душе. Карманных денег на эксперименты уже не хватало, и мальчик начал зарабатывать средства сам. Он мыл посуду в бистро, работал на складе, в бакалейном магазине.

Между тем взрывы в подвале происходили все чаще, а мощность их все росла. Во имя спасения дома от уничтожения Дэвиду был поставлен ультиматум: или он переходит к менее опасным опытам, или его подвальная лаборатория будет уничтожена. Угроза сработала, и семья целый месяц жила спокойной жизнью. Пока однажды поздним вечером дом не сотряс мощный взрыв. Кен бросился в подвал, где и обнаружил сына, лежащего без сознания с опаленными бровями. Взорвался брикет красного фосфора, который Дэвид пытался раскрошить с помощью отвертки. С этого момента всякие опыты в пределах отцовской собственности были категорически запрещены. Однако у Дэвида оставалась еще запасная лаборатория, оборудованная в сарае у мамы, в Голф-Маноре. В ней и развернулись основные события.

Сейчас отец Дэвида говорит, что во всем виноваты бойскаутизм и непомерное честолюбие сына. Он во что бы то ни стало желал получить высший знак отличия -- Бойскаутского Орла. Однако для этого, по правилам, нужно было заработать 21 специальный знак отличия, одиннадцать из которых даются за обязательные навыки (умение оказать первую помощь, знание основных законов сообщества, умение развести костер без спичек и так далее), а десять -- за достижения в любых, выбранных самим скаутом, областях.

10 мая 1991 года четырнадцатилетний Дэвид Хан сдал своему скаутмастеру Джо Ауито написанную им для получения очередного значка отличия брошюру, посвященную проблемам ядерной энергетики. При ее подготовке Дэвид обращался за помощью в компанию "Вестингауз электрик" и Американское ядерное общество, в Электрический институт Эдисона, а также в компании, занимающиеся управлением атомными электростанциями. И везде встречал самое горячее понимание и искреннюю поддержку. В качестве дополнения к брошюре была приложена модель ядерного реактора, сделанная из алюминиевой пивной банки, одежной вешалки, соды, кухонных спичек и трех мусорных пакетов. Однако все это для кипящей души юного бойскаута с выраженными ядерными наклонностями казалось слишком мелким, и поэтому следующим этапом своей работы он выбрал строительство настоящего, только небольшого, ядерного реактора.

Пятнадцатилетний Дэвид решил для начала построить реактор, превращающий уран-235 в уран-236. Для этого ему требовалось совсем немного, а именно -- добыть некоторое количество собственно 235-го урана. Для начала мальчик составил список организаций, которые могли бы ему помочь в его начинаниях. В него вошли Министерство энергетики, Американское ядерное общество, Комиссия по ядерному урегулированию, Электрический институт Эдисона, Атомный индустриальный форум и так далее. Дэвид писал по двадцать писем в день, в которых, представляясь преподавателем физики из Высшей школы в Чиппеве-Валли, просил оказать ему информационную помощь. В ответ он получил просто тонны информации. Правда, большая часть ее оказалась совершенно бесполезной. Так, организация, на которую мальчик возлагал самые большие надежды, Американское ядерное общество, прислало ему книжку комиксов "Goin. Реакция расщепления", в которой Альберт Эйнштейн говорил: "Я -- Альберт. Und сегодня ve проведем реакция расщепления ядра. Ich не иметь в виду ядро пушки, ich говорить про ядро атома..."

Однако в этом списке оказались и организации, оказавшие юному ядерщику поистине неоценимые услуги. Начальник отдела производства и распределения радиоизотопов Комиссии по ядерному урегулированию Дональд Эрб сразу проникся к "профессору" Хану глубокой симпатией и вступил с ним в длительную научную переписку. Довольно много информации "учитель" Хан получил из обычной прессы, которую он завалил вопросами типа: "Расскажите, пожалуйста, как производится такое-то вещество?"

Уже спустя неполных три месяца Дэвид имел в своем распоряжении список, состоявший из 14 необходимых изотопов. Еще месяц ушел на то, чтобы выяснить, где эти изотопы можно найти. Как оказалось, америций-241 применялся в дымовых датчиках, радий-226 -- в старых часах со светящимися стрелками, уран-235 -- в черной руде, а торий-232 -- в сетках-рассекателях газовых фонарей.

Начать Дэвид решил с америция. Первые дымовые датчики он украл ночью из палаты бойскаутского лагеря в то время, когда остальные мальчики отправились в гости к жившим неподалеку девочкам. Однако десяти датчиков для будущего реактора было крайне мало, и Дэвид вступил в переписку с компаниями-производителями, одна из которых согласилась продать настырному "педагогу" для лабораторных работ сто бракованных приборов по цене $1 за штуку.

Мало было датчики получить, надо было еще понять, где у них там америций находится. Для того чтобы получить ответ на этот вопрос, Дэвид связался с другой фирмой и, представившись директором строительной компании, сказал, что он хотел бы заключить договор на поставку крупной партии датчиков, но ему рассказали, что при его производстве используется радиоактивный элемент, и теперь он боится, что радиация "просочится" наружу. В ответ на это милая девушка из отдела по работе с клиентами сообщила, что, да, радиоактивный элемент в датчиках присутствует, но "...для тревоги причин нет, так как каждый элемент запакован в специальную, устойчивую к коррозии и повреждениям золотую оболочку".

Извлеченный из датчиков америций Дэвид поместил в свинцовый корпус с крошечным отверстием в одной из стенок. По замыслу создателя, из этого отверстия должны были выходить альфа-лучи, являющиеся одним из продуктов распада америция-241. Альфа-лучи, как известно, представляют собой поток нейтронов и протонов. Для того чтобы отфильтровать последние, Дэвид поставил перед отверстием лист алюминия. Теперь алюминий поглощал протоны и давал на выходе относительно чистый нейтронный луч.

Для дальнейшей работы ему требовался уран-235. Сначала мальчик решил найти его самостоятельно. Он исходил со счетчиком Гейгера в руках все ближайшие окрестности, надеясь найти хоть что-нибудь, напоминающее черную руду, однако самое большое, что ему удалось отыскать, это пустой контейнер, в котором когда-то эту руду перевозили. И юноша опять взялся за перо.

На этот раз он связался с представителями чешской фирмы, занимавшейся продажей небольших партий урансодержащих материалов. Фирма незамедлительно выслала "профессору" несколько образцов черной руды. Дэвид же незамедлительно раздолбил образцы в пыль, которую затем, в надежде выделить чистый уран, растворил в азотной кислоте. Полученный раствор Дэвид пропустил через кофейный фильтр, надеясь, что куски нерастворенной руды осядут в его недрах, в то время как уран пройдет через него свободно. Но тут его постигло жуткое разочарование: как оказалось, он несколько переоценил способность азотной кислоты растворять уран, и весь необходимый металл остался в фильтре. Что делать дальше, мальчик не знал.

Однако он не стал отчаиваться и решил попытать счастья с торием-232, который потом, с помощью той же нейтронной пушки, планировал превратить в уран-233. На складе уцененных товаров он купил около тысячи ламповых сеток-рассекателей, которые паяльной лампой пережег в золу. Затем он на тысячу долларов накупил литиевых батареек, кусачками извлек из них собственно литий, смешал его с золой и нагрел в пламени паяльной лампы. В результате литий отобрал из золы кислород, а Дэвид получил торий, уровень очистки которого в

9000 раз превышал уровень его содержания в природных рудах и в 170 раз -- уровень, который требовал лицензирования от Комиссии по ядерному урегулированию. Теперь оставалось только направить нейтронный луч на торий и ждать, когда он превратится в уран.

Однако тут Дэвида ждало новое разочарование: мощности его "нейтронной пушки" явно не хватало. Для того чтобы повысить "боеспособность" оружия, нужно было подобрать америцию достойную замену. Например, радий.

С ним все было несколько проще: вплоть до конца 60-х светящейся радиевой краской покрывались стрелки часов, автомобильные и самолетные приборы и прочие вещи. И Дэвид отправился в экспедицию по автомобильным свалкам и антикварным магазинам. Как только ему удавалось отыскать что-нибудь люминесцентное, он тут же приобретал эту вещь, благо старые часы много не стоили, и аккуратно соскребал с них краску в специальный пузырек. Работа шла чрезвычайно медленно и могла растянуться на многие месяцы, если бы Дэвиду не помог случай. Как-то, проезжая на своем стареньком "понтиаке-6000" по улице родного городка, он обратил внимание, что смонтированный им на приборной панели счетчик Гейгера внезапно заволновался и заверещал. Недолгие поиски источника радиоактивного сигнала привели его в антикварный магазин миссис Глории Генетт. Тут он нашел старые часы, у которых радиевой краской был закрашен весь циферблат. Заплатив $10, юноша унес часы домой, где и подверг их вскрытию. Результаты превзошли все ожидания: кроме окрашенного циферблата, он нашел спрятанный за задней стенкой часов полный флакончик радиевой краски, по-видимому, оставленный там забывчивым часовщиком.

Для того чтобы получить чистый радий, Дэвид использовал сульфат бария. Смешав барий и краску, он расплавил получившийся состав, а расплав опять же пропустил через кофейный фильтр. На этот раз у Дэвида все получилось: барий абсорбировал примеси и застрял в фильтре, в то время как радий прошел через него беспрепятственно.

Как и прежде, Дэвид поместил радий в свинцовый контейнер с микроскопическим отверстием, только на пути луча, по совету его старого друга из Комиссии по ядерному урегулированию доктора Эрба, он поставил не алюминиевую пластину, а бериллиевый экран, украденный из школьного кабинета химии. Полученный нейтронный луч он направил на торий и на урановый порошок. Однако если радиоактивность тория понемногу начала расти, то уран оставался без изменений.

И тут на помощь шестнадцатилетнему "профессору" Хану вновь пришел доктор Эрб. "Нет ничего удивительного, что в вашем случае ничего не происходит, -- разъяснил он лжепедагогу ситуацию. -- Описанный вами нейтронный луч слишком быстр для урана. В таких случаях для его замедления используются фильтры из воды, дейтерия или, скажем, трития". В принципе Дэвид мог использовать воду, но он счел это компромиссом и пошел по другому пути. Используя прессу, он выяснил, что тритий используется при производстве светящихся прицелов для спортивных ружей, луков и арбалетов. Далее его действия были просты: юноша покупал в спортивных магазинах луки и арбалеты, счищал с них тритиевую краску, нанося вместо нее обычный фосфор, и сдавал товар обратно. Собранным тритием он обработал бериллиевый экран и вновь направил нейтронный поток на урановый порошок, уровень радиации которого уже через неделю значительно вырос.

Наступила очередь создания самого реактора. За основу скаут взял модель реактора, используемого при получении оружейного плутония. Дэвид, которому к тому времени было уже семнадцать, решил использовать накопленный материал. Совершенно не заботясь о безопасности, он извлек из своих пушек америций и радий, смешал их с алюминиевым и бериллиевым порошком и завернул "адскую смесь" в алюминиевую фольгу. То, что еще недавно было нейтронным оружием, превратилось теперь в ядро для импровизированного реактора. Получившийся шар он обложил обернутыми также в фольгу чередующимися кубиками с ториевой золой и урановым порошком и сверху обмотал всю конструкцию толстым слоем скотча.

Конечно, "реактор" был далек от того, что можно считать "промышленным образцом". Сколь-нибудь ощутимого тепла он не давал, зато его радиационное излучение росло не по дням, а по часам. Вскоре уровень радиации вырос настолько, что дэвидов счетчик начинал тревожно трещать уже в пяти кварталах от дома матери. Только тогда юноша понял, что он собрал в одном месте слишком много радиоактивного материала и с такими играми пора завязывать.

Он разобрал свой реактор, сложил торий и уран в ящик для инструментов, радий и америций оставил в подвале, а все сопутствующие материалы решил вывезти на своем "понтиаке" в лес.

В 2.40 ночи 31 августа 1994 года в полицию города Клинтон позвонил неизвестный и сообщил, что кто-то, по-видимому, пытается украсть покрышки с чьей-то машины. Оказавшийся этим "кем-то" Дэвид объяснил подъехавшим полицейским, что он просто ждет друга. Полицейских ответ не удовлетворил, и они попросили юношу открыть багажник. Там они обнаружили массу странных вещей: поломанные часы, провода, ртутные выключатели, химические реактивы и около пятидесяти завернутых в фольгу упаковок с неизвестным порошком. Но наибольшее внимание полицейских привлек закрытый на замок ящик. На просьбу открыть его Дэвид ответил, что этого делать нельзя, поскольку содержимое ящика страшно радиоактивно.

Радиация, ртутные выключатели, часовые механизмы... Ну какие еще ассоциации могли вызвать эти вещи у офицера полиции? В 3 часа ночи в офис окружной полиции ушла информация о том, что в городе Клинтон штата Мичиган силами местной полиции задержана машина с взрывным устройством, предположительно -- с ядерной бомбой.

Прибывшая наутро команда саперов, осмотрев машину, успокоила местное начальство, заявив, что "взрывное устройство" в действительности таковым не является, но тут же повергло его в шок сообщением о том, что в автомобиле обнаружено большое количество радиационно опасных материалов.

На допросах Дэвид упорно молчал. Лишь в конце ноября он поведал следствию о тайнах материнского сарая. Все это время отец и мать Дэвида, напуганные мыслями о том, что их дома могут быть конфискованы полицией, занимались уничтожением улик. Сарай был очищен от всякого "мусора" и моментально наполнен овощами. О прежнем его содержимом теперь напоминал только высокий, более чем в 1000 раз превышающий фоновый, уровень радиации. Который и зарегистрировали посетившие его 29 ноября представители ФБР. Спустя почти год после ареста Дэвида представители агентства по охране окружающей среды добились судебного решения о сносе сарая. Его демонтаж и захоронение на свалке радиоактивных отходов в районе Грейт-Солт-Лейка обошлись родителям "радиоактивного бойскаута" в $60 000.

После уничтожения сарая Дэвид впал в глубокую депрессию. Вся его работа пошла, что называется, коту под хвост. Члены его бойскаутского отряда давать ему Орла отказались, заявив, что его опыты вовсе не были полезны людям. Вокруг него царила атмосфера подозрительности и недоброжелательства. Отношения с родителями после уплаты штрафа испортились безнадежно. После окончания Дэвидом колледжа отец поставил сыну новый ультиматум: или он идет служить в Вооруженные силы, или его выгоняют из дому.


Сейчас Дэвид Хан служит сержантом на атомном авианосце ВМФ США "Энтерпрайз". Правда, к ядерному реактору его, в память прошлых заслуг и во избежание возможных неприятностей, близко не подпускают. На полке в его кубрике стоят книжки о стероидах, меланине, генетике, антиоксидантах, ядерных реакторах, аминокислотах и уголовном праве. "Я уверен, что своими опытами отнял у себя не больше пяти лет жизни, -- говорит он изредка посещающим его журналистам. -- Поэтому у меня еще есть время для того, чтобы сделать для людей что-нибудь полезное".

Микроатомный реактор для бытовых нужд к сожалению создать нельзя и вот почему. Работа атомного реактора основана на цепной реакции расщепления ядер Урана-235 (²³⁵U) тепловым нейтроном: n + ²³⁵U → ¹⁴¹Ba + ⁹²Kr + γ (202.5 МэВ) + 3n. Рисунок цепной реакции расщепления приведен ниже

На рис. видно как нейтрон, попадая в ядро (²³⁵U) возбуждает его и ядро расщепляется на два осколка (¹⁴¹Ba, ⁹²Kr), γ-квант с энергией 202.5 МэВ и 3 свободных нейтрона (в среднем), которые в свою очередь могут расщепить следующие 3 ядра урана, оказавшиеся на их пути. Так в процессе каждого акта расщепления выделяется около 200 МэВ энергии или ~3 × 10⁻¹¹ Дж, что соответствует ~80 ТерраДж/кг или 2,5 миллиона раз больше, чем выделялось бы в таком же количестве горящего угля. Но как наставляет нас Мерфи: "если неприятность должна случиться, то она обязательно случается", и часть нейтронов, рожденных при расщепления, теряется в процессе цепной реакции. Нейтроны могут выйти (выскочить) из активного объёма или поглотиться примесями (например Криптоном). Отношение числа нейтронов последующего поколения к числу нейтронов в предшествующем поколении во всём объеме размножающей нейтронной среды (активной зоны ядерного реактора) называется коэффициентом размножения нейтронов, k. При k<1 цепная реакция затухает, т.к. число поглощенных нейтронов больше числа вновь образовавшихся. При k>1 почти мгновенно происходит взрыв.При k равном 1 идет управляемая стационарная цепная реакция. Коэффициент размножения нейтронов (k) наиболее чувствителен к массе и чистоте ядерного топлива (²³⁵U). В ядерной физике минимальная масса делящегося вещества, необходимая для начала самоподдерживающейся цепной реакции деления (k≥1) называется критической массой. Для Урана-235 она равна 50 кг. Это конечно не микроразмер, но и немного. Чтобы избежать ядерного взрыва и создать возможность управления цепной реакцией (коэффициентом размножения), в реакторе массу топлива надо увеличить и соответственно ввести в строй поглотители (замедлители) нейтронов. Вот именно эта инженерно-техническая оснастка реактора, с целью устойчивого управления цепной реакцией, система охлаждения и дополнительные сооружения для радиационной безопасности персонала, и требуют больших объемов.

Можно также в качестве топлива использовать Калифорний-232 с критической массой около 2.7 кг. В пределе довести реактор до размеров шара диаметром в несколько метров вероятно вполне возможно. Скорее всего так и делается наверно на атомных подводных лодках. Думаю подходить к таким реакторам должно быть весьма опасно ☠ из-за неизбежного нейтронного фона, но подробнее об этом надо спросить уже у вояк.

Калифорний не подходит в качестве ядерного топлива в виду его огромной стоимости. 1 грамм калифорния-252 стоит порядка 27 миллионов долларов. В качестве ядерного топлива широко используется только уран. Топливные элементы на основе тория и плутония пока широкого распространения не получили, но активно разрабатываются.

Относительно высокая компактность реакторов подводных лодок обеспечивается разницей в конструкции (обычно используются водо-водяные реакторы, ВВЭР/PWR), разными требованиями к ним (другие требования оп безопасности и аварийной остановке; на борту обычно не нужно много электричества, в отличие от реакторов наземных электростанций, которые только ради электричества и создавались) и применением разной степени обогащения топлива (концентрации урана-235 по отношению к концентрации урана-238). Обычно, в топливе для морских реакторов применяется уран с гораздо более высокой степенью обогащения (от 20% до 96% для американских лодок). Также в отличие от наземных электростанций, где распространено использование топлива в форме керамики (диоксида урана) в морских реакторах чаще всего применяют в качестве топлива сплавы урана с цирконием и другими металлами.

Приборы генерирующие электрический ток в результате использования энергии ядерного распада, хорошо изучены (с 1913 года) и давно освоены в производстве. В основном их используют там, где нужна относительная компактность и высокая автономность - в исследованиях космоса, подводных аппаратах, малолюдных и безлюдных технологиях. Перспективы их применения в бытовых условиях довольно скромные, помимо радиационной опасности большинство видов ядерного топлива имеют высокую токсичность и в принципе крайне небезопасны при контакте с окружающей средой. Несмотря на то, что в англоязычной литературе эти приборы именуются атомными батареями , и реакторами их называть не принято, их вполне можно считать таковыми, ведь в них идет реакция распада. При желании подобные устройства можно адаптировать для бытовых нужд, это может быть актуально для условий, например, Антарктики.

Радиоизотопные термоэлектрические генераторы давно существуют и полностью удовлетворяют вашему запросу - они компактные и достаточно мощные. Работают за счет эффекта Зеебека , движущихся частей не имеют. Если бы это не противоречило здравому смыслу, технике безопасности и уголовному кодексу, такой вот генератор можно было бы закопать где-нибудь под гаражом на даче и даже запитать от него пару лампочек и ноутбук. Пожертвовать так сказать здоровьем потомков и соседей ради сотни-другой ватт электроэнергии. Всего в России и СССР таких генераторов произведено более 1000.

Как уже ответили другие участники, перспективы миниатюризации "классических" реакторов ядерной энергетики с использованием паровых турбин для генерации электроэнергии сильно ограничены законами физики, причем основные ограничения накладывает не столько размеры реактора, сколько размеры прочего оборудования: бойлеров, трубопроводов, турбин, градирен. "Бытовых" моделей скорее всего не будет. Тем не менее достаточно компактные устройства сейчас активно разрабатываются, например перспективный реактор компании NuScale при мощности в 50 МВтэ имеет размеры всего лишь 76 на 15 дюймов, т.е. около двух метров на 40 сантиметров.

С энергетикой ядерного синтеза все гораздо более непросто и неоднозначно. С одной стороны, речь может идти только о дальней перспективе. Пока не дают энергии даже большие реакторы ядерного синтеза и речь об их практической миниатюризации просто не идет. Тем не менее ряд серьезных и еще более серьезных организаций ведут разработки компактных источников энергии на основе реакции синтеза. И если в случае с Локхид-Мартин, под словом "компактный" понимается "размером с автофургон", то, например в случае с американским агентством DARPA, которое выделило в 2009 фискальном году

почитав один специализированый блог, пообщавщись с авторомм и его сокамерниками пользователями... что могу сказать - агресивные товарищи. за огрессией я вижу плохое знание элементарных физических процессов, но да бог с ними.

хочется поговорить немного о термоядерном синтезе, как я уже отмечал существует энегия связи т.е. энергия связанного состояния т.е. если что-то целое поломать, то в поломаном сотоянии это весит тяжелее чем в целом. так как дядя Алберт установил связь между массой и энергией можно оценить сколько усилий нужно затратить на слом, просто взвещивая "осколки" и сравнивая с весом свзанного состояния.

надо сказть что это величина исчезающи мала и горить об энерги связи скажем расколотого и целого кирпича особого смысла в повседневной жизни нет.

что же касается ядерной энергетики то можно назвать два вида реакций с выделением энергии - это "развал" тяжелых ядер на более легкие и наоборот слиние легких ядер в нечто тяжелое. нас конечно интересут реакции идущие с выделением энергии.

что же вспомним наше наше недавнее прошлое.

как запустить термоядерную реакцию на коленке? да элементарно. нам нужны только компонены реакции, глубокий вакуум и высокое напряжение.

ведь ионизировать газ можно целой кучей способов. самы простой - создать необходимую напряженность электрического поля. я не буду здесь подробно описывать конструкцию благо и описывать особо нечего - это в общем-то два шарика один в другом, внутренний делают из тугоплавкой проволоки. между шариками создают большую разность потенциалов - все. если в шарике (внешнем) напримере пары детерия все пойдет как по маслу. т.е. основным компонентом видится тяжелая вода. она легко добывается. процесс не быстрый. суть сводится к тому, что изотопы дейтерия имеют чуть разные физические свойства в сравнии с обычным водородом. и просто испаряя и замораживая воду можно "надыбать немного дейтерия". может возможны и другие более быстрые варианты сепарации.

кстаи напряжение нужно довольно большое - десятки киловолт я слышал про значения 40 кВ. все просто и элементарно. можно подпихнуть гуглу ключ типа "термоядерный реактор своими руками", можно пойти в ютуб и забить в местный поисковик слово fusor.

все просто и элементарно.

возникает вопрос почему никто не развивает данный тип реакторов? мировая закулиса мешает али еще что?

ответ простой - плазма не удерживается. т.е. даже если ионам удалось преодалеть кулоновский барьер и реакция произошла, что кстати видно по детектору нейтронов, то на этом в общем-то все. современные реакторы работают иначе - они представляют из себя ловушку в которой находится плазма, плазму необходимо зажечь, а дальше реакция выходит на самоподдержку без подвода энергии из вне. плазму кстати все еще надо удерживать:)

эта "замануха" тащет человечество за нос не одно десятилетие, суля ему решение многих энергетических проблем, но удержание плазмы процесс кропотливый и творческий, и не решенный до конца. дай бог ITER достроят и явят миру демонстрацию термоядерной энергетики. есть некоторые основния для оптимизма, но лично я отношусь скептичеески. даже если все получится и все будет работать - построить такую установку в "одно лицо" в ряд ли выйдет. сответсвенно это поиск новых режимов плазмы, новых методов удержания и т. п. все что позволит снизить стоимость установки.

сейчас снова заговорили об ловушках открытого типа - это более дешевый вариант, а новые знания позволили удерживать плазму значительно дольше чем раньше, однако до практической пригодности результатов экспериментов говорить не приходится.

если вы жить не можите без потока нейтронов, то вам просто необходимо собрать fusor, если же вы ищите какой-то практической пользы, то вам не надо этого делать.

к тому же я думаю развитие алтернативной энергетики тоже нельзя сбрасывать со счетов. есть очень дешевые и эфективные методы строительства сверхдальных линий энергопередачи, об одном таком методе , рост кпд солнечных модулей, о чем тоже я писал, развитие систем сохранения энегии. не знаю миром правяят деньги, конечно идея "термояда" такая романтическо-экзотичекая-футуристическая, но в жизни как правило верх берет рационализм.

Материалу.

Запуск первого в мире искусственного ядерного реактора

2 августа мир облетели новости из благополучной Швеции. "Мужчина собрал у себя на кухне ядерный реактор", - кричали заголовки, и перед взором падкого на сенсации обывателя представала фантастического вида установка, скрытая под переплетением труб и проводов, внутри которой происходили те самые ядерные реакции. Масла в огонь подлило и то, что на строительство своего детища швед потратил чуть менее тысячи долларов, а радиоактивные материалы для реактора якобы получил из-за рубежа.

Понятное дело, что на просторах интернета тут же началось обсуждение произошедшего. Кто-то вспомнил Андерса Брейвика, посетовав на то, что скандинавы стали попадать в новости по крайне опасным поводам; кто-то обеспокоился, не окажутся ли подобные технологии в руках террористов; а кто-то заинтересовался тем, какое практическое применение можно найти изобретению загадочного Ричарда (до сих пор известно только предполагаемое имя умельца, да и то лишь потому, что блог, в котором создатель реактора подробно отчитывался о ходе проекта, назывался "Реактор Ричарда"). Как это часто бывает, в действительности история оказалась гораздо менее фантастической, чем казалась на первый взгляд - работающий реактор Ричард так и не построил, да и вообще, похоже, всего лишь пытался повторить подвиг легендарного Радиоактивного бойскаута.

Веб-дизайнер из Нью-Йорка и Радиоактивный бойскаут

Прежде, чем перейти к истории Ричарда, следует отметить два важных факта. Во-первых, домашний ядерный реактор - не такая уж большая редкость по нынешним временам. Например, в июне 2010 года некто Марк Саппс, известный преимущественно как веб-дизайнер для дома "Гуччи", стал 38-м частным лицом (среди этих энтузиастов, у которых имеется собственный сайт, есть, например, 15-летний школьник из Мичигана), осуществившим у себя дома реакцию ядерного синтеза (Ричард, напомним, интересовался распадом). Установка Саппса (на которую он, к слову, потратил около 40 тысяч долларов) потребляет энергии больше, чем производит. Вместе с тем из истории с веб-дизайнером можно составить общее представление о доступности ядерных технологий в современном мире.

Во-вторых, Ричард явно пошел по стопам 17-летнего американского школьника Дэвида Кана - технологии обоих физиков-энтузиастов совпадают по множеству пунктов, включая подбор сырья в виде использованных детекторов дыма, старых часов и сеток для керосиновых ламп. Именно поэтому, прежде чем говорить о шведе, необходимо рассказать историю простого американского школьника, получившего в прессе прозвище Радиоактивный бойскаут.

В июне 1995 года в небольшой город в штате Мичиган нагрянули люди в защитных антирадиационных костюмах. Вместо того чтобы, как положено в фантастическом фильме, эвакуировать людей, они стали разбирать небольшой сарайчик на заднем дворе местной жительницы по имени Пэтти Кан. Строение распиливали на мелкие куски, которые потом осторожно укладывали в большие металлические контейнеры с характерным трилистником на желтом фоне. Оказалось, что в сарае хранились радиоактивные материалы, которые принадлежали сыну Пэтти по имени Дэвид - на тот момент 17-летнему молодому человеку.

С 12 лет Дэвид увлекался химией, а потом заинтересовался и ядерной физикой. Вероятно, именно тогда ему и пришла в голову идея построить прямо у себя дома ядерный реактор (в данном случае, в отличие от Саппса, речь идет о реакциях, при которых элементы превращаются друг в друга с испусканием элементарных частиц). Однако после одного из экспериментов, который окончился взрывом, мать запретила молодому человеку заниматься опытами в доме. Поэтому Дэвид, втайне от Пэтти, перевез лабораторию в сарай. Надо сказать, что информацию, необходимую для создания реактора, молодой Кан собирал практически по крупицам - притворяясь то студентом, работающим над докладом, то школьным учителем физики, он звонил, писал в самые разные организации, включая Комиссию по ядерной регламентации США, где молодому "учителю" дали много дельных советов. Когда теоретическая часть подготовки была завершена, молодой человек приступил к практическому осуществлению проекта.

Изначально его целью было просто провести какую-нибудь ядерную реакцию, и он решил собрать нейтронную пушку - источник направленных нейтронов. Для этого ему потребовался источник альфа-частиц (то есть частиц, состоящих из двух протонов и двух нейтронов). В качестве него выступил америций-241. Оказалось, что этот материал использовался в небольших количествах при изготовлении старых детекторов дыма - совет по извлечению материала из деталей Кану дали в одной электротехнической компании из Иллинойса. Достав америций, Кан поместил его в свинцовую камеру с маленькой дырочкой, обмотанную фольгой. Облучение алюминиевой фольги, прикрывающей отверстие, позволило получить поток нейтронов.

В качестве цели для нейтронной пушки использовался торий-232, который, как выяснилось, в большом количестве присутствует в сетках, используемых в старых (в том числе и керосиновых) лампах. При помощи лития и нехитрых химических реакций Дэвид получил достаточно чистый торий в концентрации, в 170 раз превышающей допустимую Комиссией по ядерной регламентации. Кан планировал облучать торий нейтронами, чтобы получить торий-233 (его период полураспада - чуть более 22 минут), который бы, в результате последующего распада превращался в протактиний (период полураспада - 27 дней), а затем - в уран-233. Оказалось, однако, что нейтронная пушка Дэвида выстреливала слишком мало нейтронов, и все они были слишком быстрые, что в мире ядерной физики, основанном на вероятности, не позволяло проводить нужную реакцию.

Дэвид решил усовершенствовать пушку. Для этого он стал собирать радий - радиоактивный элемент, который встречается в старых часах: краской, содержащей этот элемент, покрывали стрелки часов, светящиеся в темноте. Вместо алюминия в пушке Кан использовал бериллий, образец которого по просьбе Дэвида из школьной коллекции минералов стащил его приятель. Что выступало в качестве замедлителя нейтронов, неизвестно, но швед Ричард рекомендовал использовать парафин, графит, бор или кадмий. Как бы то ни было, но пушка Дэвида заработала. В качестве объекта для облучения выступал порошок из декоративных бус, содержащих некоторое количество урана. Как на практике выглядит подобная пушка и как, используя перечисленные материалы, можно собрать некоторое подобие реактора, подробно рассказывается в этом ролике.

Надо сказать, что Дэвид закончил плохо. Он служил во флоте, когда в начале 2000-х годов его нашли журналисты - в то время про него как раз выходила книга "Радиоактивный бойскаут". Дэвид рассказал им, что планирует посвятить свою жизнь ядерной физике. В 2007 году, однако, он был арестован при попытке украсть детекторы дыма из одного здания. После этого он оказался в тюрьме, и с этого момента его следы теряются. Надо сказать, что на фотографиях в день задержания Дэвид Кан выглядел очень неважно - многие полагают, из-за неугасшей одержимости радиоактивными материалами, которые окончательно подорвали ему здоровье.

Шведский реакторостроитель

Ричард начал вести свой блог (довольно, надо сказать, бессодержательный) в мае 2011 года, причем с самого начала объявил, что строит свой реактор просто так, ради забавы.

Далее, в течение нескольких постов он, как это принято у большинства блогеров, то есть без всяких ссылок, описывает способы получения радия, тория и америция, которыми пользовался Дэвид Кан. Есть в блоге даже упоминание о пресловутых бусинах, в которых содержится уран. При этом никаких результатов экспериментов или хотя бы изображения реактора в его блоге так и не появилось. Максимум, что там есть - это несколько моделей нейтронных пушек, одна из которых собрана в пластиковом медицинском пузырьке.

Наконец, предпоследний пост (21 мая) был посвящен тому, что Ричард попытался "сварить" америциум, радий и бериллий в кислоте, чтобы они лучше смешались (вероятно, для создания нейтронной пушки), однако это привело к взрыву. Последнее сообщение в блоге датируется 21 июля. В нем автор пишет, что был задержан полицией, а все радиоактивные материалы у него конфисковали.

Эта информация совпадает с версией, представленной в местной газете Helsingborgs Dagblad, которая и стала, судя по всему, источником сенсационной новости. По данным издания, молодой мужчина сам обратился в Комитет по ядерной энергетике с вопросом, не нарушает ли он закон, сооружая у себя на кухне ядерный реактор. Оказалось, что нарушает - именно так Ричард и очутился в полиции.

Вот такая история. Так как в течение двух месяцев Ричард ничего не писал в блоге, никаких особых успехов в построении реактора, видимо, он не достиг. Да и вообще, слишком большое сходство экспериментов Ричарда с историей Радиоактивного бойскаута заставляет усомниться в реальности предпринятой им попытки. Одно можно сказать точно уже сейчас: сенсация не состоялась.

Ядерные "чудеса" рядом с нами

Старый детектор дыма. Здесь америций

Бериллий

Из этих сеточек можно извлечь торий

Нейтронная пушка

Стрелки часов с радием

Брелок с тритием

Немного урана в бусинке