В интернете сейчас представлено огромное количество различных усилителей звука, на любой вкус и цвет, под любые нужны. Как известно, даже самые надёжные усилители имеют свойство выходить из строя, например, из-за неправильных условий эксплуатации, перегрева или неправильного подключения. В этом случае велика вероятность того, что высокое питающее напряжение окажется на выходе усилителя, и, следовательно, беспрепятственно окажется прямо на динамиках акустической системы. Таким образом, вышедший из строя усилитель утягивает за собой «в мир иной» подключенную к нему акустическую систему, которая может стоить гораздо дороже самого усилителя. Именно поэтому крайне рекомендуется подключать усилитель к колонкам через специальную плату, которая называется защитой акустических систем.

Схема

Один из вариантов такой защиты показан на схеме выше. Работает защита следующим образом: сигнал с выхода усилителя подаётся на вход IN, а колонки подключаются к выходу OUT. Минус усилителя соединяется с минусом схемы защиты и идёт к колонкам напрямую. В обычном состоянии, когда усилитель работает и на плату защиты поступает питание реле Rel 1 замыкает вход платы на выход и сигнал идёт напрямую с усилителя на колонки. Но как только на входе появляется постоянное напряжение хотя бы 2-3 вольта, защита срабатывает, реле отключается, тем самым отключая усилитель от колонок. Схема не критична к номиналам резисторов и допускает разброс. Транзистор Т1 можно ставить 2N5551, 2N5833, BC547, КТ3102 или любой другой маломощный npn транзистор. Т2 обязательно должен быть составным с большим коэффициентом усиления, например, BDX53 или КТ829Г. Светодиод на схеме служит для индикации состояния реле. Когда он горит реле включено, сигнал идёт напрямую с усилителя на колонки. Помимо защиты от постоянного напряжения, схема обеспечивает задержку подключения акустической системы. После подачи напряжения питания реле включается не сразу, а через 2-3 секунды, это нужно для того, чтобы избежать щелчков в колонках при включении усилителя. Напряжение питания схемы 12 вольт. Реле можно применить любое с напряжением питания обмотки 12 вольт и максимальным током через контакты хотя бы 10 ампер. Кнопка с фиксацией S1 выводится на проводах, она нужна для принудительного отключения реле, на всякий случай. Если это не требуется, можно просто замкнуть дорожки на печатной плате.

(cкачиваний: 492)


Сборка устройства

Усилители, чаще всего, рассчитаны на два канала, левый и правый, поэтому схему защиты нужно повторить дважды для каждого канала. Для удобства плата разведена так, что на ней уже предусмотрена сборка сразу двух одинаковых схем. Печатная плата изготавливается методом ЛУТ, её размеры составляют 100 х 35 мм.


После сверления отверстий дорожки желательно залудить. Теперь можно приступать к запаиванию деталей. Особое внимание следует уделить цоколёвке транзисторов, очень важно не перепутать её и впаять транзисторы нужной стороной. Как обычно, сначала запаиваются мелкие детали – резисторы, диоды, конденсаторы, а уже затем транзисторы, клеммники, и в самую последнюю очередь массивные реле. Для подключения всех проводов можно использовать клеммники, места для которых предусмотрены на плате. После завершения пайки нужно смыть остатки флюса с дорожек, проверить правильность монтажа.


Испытания защиты

Теперь, когда плата полностью готова, можно приступать к испытаниям. Подаём питание на схему (12 вольт), спустя две секунды одновременно должны щёлкнуть реле и включиться светодиоды. Теперь берём какой-нибудь источник постоянного напряжения, например, батарейку, и подключаем её между минусом схемы и входом. Реле должно сразу же выключиться. Убираем батарейку – реле вновь включается. Можно подключить батарейку, поменяв её полярность, схема срабатывает независимо от того, какой полярности напряжение появится на её входе. Те же самые манипуляции проделываем со второй схемой, расположенной на этой же плате. Порог срабатывания защиты составляет примерно 2 вольта. Теперь, когда плата защиты протестирована, можно подключать её к усилителю и не бояться, что динамики в дорогостоящих колонках испортятся из-за поломки усилителя. Удачной сборки.

Не мечтай, действуй!



Усилители мощности звуковой частоты с непосредственной связью представляют опасность для акустических систем. Почти все отказы внутренних компонентов усилителя приводят к значительному (по законам Мерфи, до напряжения питания) смещению на выходе. В результате дорогостоящие акустические системы могут выйти из строя, и было бы опрометчивым не снабдить усилитель схемой защиты, отключающей нагрузку при появлении на выходе усилителя постоянного потенциала. Защита должна срабатывать при превышении постоянного потенциала на выходе усилителя ±1,5 В, либо появления низкочастотных колебаний частотой ниже 2…3 Гц.
Практика показывает, что необходимо использовать простые и надежные схемы защиты акустических систем на основе электромагнитных реле.

Схема защиты акустических систем усилителя «Бриг-001»

На рис. 1 показана проверенная временем схема защиты акустических систем от постоянного смещения усилителя «Бриг-001». Вход схемы защиты присоединен к выходу усилителя мощности, а выход усилителя соединяется с нормально разомкнутыми контактами реле К1. После подачи питания на схему защиты, через некоторое время, определяемое постоянной времени R6, C2, составная пара транзисторов VT2, VT3 открываются, реле К1 срабатывает, и своими контактами соединяет выход усилителя с акустическими системами. Задержка включения позволяет устранить переходные процессы в усилителе в момент включения, воспринимаемые как неприятные на слух хлопки, разрушительные для акустических систем.


Рис. 1. Схема защиты акустических систем усилителя «Бриг-001»

При появлении на выходе усилителя любого из каналов постоянного напряжения положительной полярности открывается транзистор VT1, который шунтирует цепь базы составного транзистора на общий провод. При этом ток через реле К1 уменьшается настолько, что оно отпускает контакты и отключает акустические системы от усилителя. Конденсатор С1 предотвращает срабатывание реле К1 от переменного напряжения выходного сигнала.
В случае, если на выходе усилителя появится напряжение отрицательной полярности, оно поступит через делитель R6, R7 на базу составного транзистора, в результате реле К1 отпустит и отключит нагрузку от усилителя.

Случай появления на выходах усилителя равных по модулю двухполярных напряжений учтен выбором различных значений резисторов R1 и R2.
Таким образом, акустическая система защищена от постоянного напряжения любой полярности на выходе усилителя.

Подобная схема защиты акустических систем проработала в одном из моих усилителей более двух десятков лет, и ни разу не подвела, хотя около половины указанного срока усилитель трудился на увеселительных мероприятиях.


Предлагаемое устройство может быть использовано как для настоящего проекта, так и для самостоятельного конструирования усилителей звуковых частот.

Достоинства:
простота и надежность;
практически полное отсутствие ложных срабатываний;
универсальность применения.

Недостатки:
Отсутствует схема отключения акустических систем при пропадании питания.
Этот недостаток был принесен в угоду простоте и надежности устройства.

В схеме защиты установлены пассивные инфразвуковые фильтры нижних частот второго порядка (соответственно C3, C5, R10, R12 и C4, C6, R11, R13) и сенсоры аварийного постоянного напряжения на выходе усилителя (VT2, VT4, VT6 и VT3, VT5, VT7). При напряжении любой полярности более 1,5 В открывается соответствующий ключ (VT2 или VT3 для положительной полярности постоянного напряжения и VT4, VT6 или VT5, VT7 – отрицательной). При аварии база составного транзистора VT8, управляющего последовательно включенными электромагнитным реле К1 и К2, через низкоомный антизвоновый резистор R5 надежно соединяется с общим проводом, размыкая соединение выходов акустических систем через контакты реле.

Интегрирующая цепь R1, C2 в базовой цепи транзистора VT1 обеспечивает задержку подключения акустических систем при включении питания (на время 1,8 с), тем самым предотвращается проникновение в акустическую систему помех, вызванных переходными процессами в усилителе.
Схема защиты универсальна и может использоваться с другими УМЗЧ. В таблице, размещенной в правом верхнем углу схемы рис. 5 указаны номиналы R6, R7, которые необходимо изменить в соответствии с напряжением питания Uп усилителя.

Технические характеристики:
Напряжение питания, В=+25...45
Время задержки включения, с=1,8
Порог срабатывания защиты, В=более ±1,5
Выходной ток для питания реле, мА=до 100
Размеры печатной платы, мм=75х75

Детали модернизированной схемы устройства защиты акустических систем.

VT1…VT3, VT6, VT7 – Транзистор BC546B (ТО-92) – 5 шт.,
VT4, VT5 – Транзистор BC556B – 2 шт.,
VT8 – Транзистор КТ972А – 1 шт.,
VD1 - Стабилитрон КС212Ж (BZX55C12, 12V/0,5W, корпус DO-35) – 1 шт.,
VD2 - Диод 1N4004 – 1 шт.,
K1, К2 - Реле электромеханическое (1C, 12VDC, 30mA, 400R) BS-115C-12A-12VDC – 2 шт.,
R1 - Рез.-0,25-220 кОм (красный, красный, желтый, золотистый) – 1 шт.,
R2 - Рез.-0,25-1 м (коричневый, черный, зеленый, золотистый) – 1 шт.,
R3, R4 - Рез.-0,25-11 кОм (коричневый, коричневый, оранжевый, золотистый) – 2 шт.,
R5 - Рез.-0,25-10 Ом (коричневый, черный, черный, золотистый) – 1 шт.,
R6 - Рез.-0,25-2,2 кОм (красный, красный, красный, золотистый) – 1 шт.,
R7 – Перемычка,
R8…R11 - Рез.-0,25-22 кОм (красный, красный, оранжевый, золотистый) – 4 шт.,
R12, R13 - Рез.-1-22 кОм (красный, красный, оранжевый, золотистый) – 2 шт.,
C1, C2 - Конд.47/25V 0511 +105 °С – 2 шт.,
C3 – C6 - Конд.47/50V 1021 NPL (47/25V 1012 NPL) – 4 шт.,
Клеммник 2к шаг 5мм на плату TB-01A – 5 шт.


После окончания сборки не торопитесь включать устройство, а займитесь проверкой монтажа в соответствии со схемой (рис. 6). При этом особое внимание обратите на отсутствие перемычек между токоведущими дорожками, холодных паек (недостаточное пропаивание контакта элемента с печатной платой). Если таковые имеются, удалите их с помощью паяльника. Проверьте правильность установки полярных электролитических конденсаторов, транзисторов, диода и стабилитрона.
Внешний вид устройства защиты акустических систем, собранного племянником Алексеем, показан в аннотации статьи. У меня работает промежуточный вариант устройства защиты с реле РЭС22.
Для обрезки и снятия изоляции с проводов (кабелей) лучше воспользоваться специальным инструментом (рис. 9).


Рис. 9. Клещи для зачистки провода и обжима наконечников – помощник при монтаже усилителя

Включаем!

Первое включение всегда показательно. Включаю усилитель, слышен щелчок сработавших реле устройства защиты, дальше тишина. Хотя все узлы «гонял» по отдельности, еще раз измеряю напряжения питания и нули на выходах: все в порядке.
Отвлекаюсь на дела и только через полчаса начинаю прослушивание. Звучит усилитель хорошо, отдавая в нагрузку сопротивлением 6 Ом около 20 Вт.
Работает чисто и прозрачно, доставляя удовольствие от прослушивания. Однако не следует забывать, что усилитель на представляет собой систему начального уровня (лучшее из простого) и есть куда расти и развиваться.

Еще раз напомню, что вместо можно применить и ; при этом напряжение питания двухполярного источника должно составлять ±22 В для , ±16 В для , и ±12 В для TDA2006.

Настоятельно советую повторить этот проект всем желающим, чтобы приобрести опыт и построить неплохой усилитель для радиокомплекса. Не случайно девизом проекта я выбрал слоган «Не мечтай, действуй!» .

Конструируя схему своего усилителя НЧ я заранее предусмотрел в нем блок защиты акустических систем. Для чего это нужно и что может навредить акустическим системам? - во первых хотелось избавиться от "щелчка" при подаче питания на усилитель.

При включении питания конденсаторы выпрямителя начинают заряжаться что в этот момент сказывается на УНЧ - на акустические системы кратковременно попадает постоянное напряжение. Чтобы избежать этого попадания нужна схема несложного реле времени, которое сделает задержку подключения акустических систем на 0,5-1 секунду.

Во вторых - с УНЧ может случиться всякое, например, от перегрузки может сгореть один из транзисторов в УНЧ и на колонки поступит постоянное напряжение достаточно большой величины, что может спалить НЧ динамическую головку или же вывести из строя часть фильтра ваших колонок. Чтобы исключить подобные инциденты нужна схема контролирующая напряжение на выходе УНЧ и в случае появления проблем отключающая акустические системы от УНЧ.

Принципиальная схема

Я рассмотрел множество схем для защиты АС, хотелось найти универсальный вариант и с минимумом электронных компонентов, из всех схем четко выделилась одна - нашел я ее в журнале РАДИО №5 за 1998 год, автор публикации: Ю. Залиский (г. Львов, Украина).

Кроме того что схема выполняет все пункты, о которых я упоминал выше, она построена с использованием всего двух транзисторов и обеспечивает надежную защиту акустических систем для двух каналов усилителя низкой частоты.

Рис.1. Схема устройства задержки включения и защиты акустических систем (АС).

Описание схемы и журнала

Принципиальная схема устройства задержки включения и защиты АС показана на рисунке выше. Оно состоит из входного ФНЧ R1 R2C1, реле времени на транзисторе VT1 и элементах R1-R4, С1 и ключа на транзисторе VT2.

В момент включения питания конденсатор С1 начинает заряжаться через резисторы R1, R2. В течение времени его зарядки транзистор VT1 будет открыт, VT2 закрыт и ток через обмотку реле не потечет.

Резистор R3 устраняет влияние базового тока транзистора VT1 на зарядку конденсатора и увеличивает положительный порог срабатывания устройства защиты.

Когда конденсатор зарядится, напряжение на базе транзистора VT1 упадет и он закроется, а связанный с ним ключевой транзистор VT2 откроется и через обмотку реле К1 по течет ток.

Реле сработает, и его замкнувшиеся контакты К1.1 и К1.2 подключат громкоговорители к усилителю. Задержка включения равна примерно 4 с.

Если на каком-то из выходов усилителя появится постоянное напряжение положительной полярности, это приведет к частичной разрядке конденсатора С1, открыванию транзистора VT1 и закрыванию транзистора VT2. В результате ток через обмотку реле прекратится и его контакты отключат громкоговорители от усилителей.

Если же на выходах последних появится постоянное напряжение отрицательной полярности, то оно непосредственно через диод VD1 поступит на базу транзистора VT2, закроет его и таким образом обесточит реле К1, контакты К1.1, К1.2 которого разомкнутся и снова отключат громкоговорители от усилителя.

Диоды VD1-VD2 ограничивают максимальное отрицательное напряжение на базе входного транзистора VT1 на уровне 1,3 В. Хотя и в режиме защиты громкоговорителей, и в режиме задержки их включения конденсатор С1 заряжается через одни и те же цепи, время срабатывания защиты на порядок меньше, поскольку для этого конденсатор должен изменить свой потенциал всего на несколько вольт. Пороги срабатывания защиты составляют не более ±4 В.

Правильно изготовленное устройство начинает работать сразу и настройки не требует. Диоды можно применить любые кремниевые. Остальные элементы желательно применить те, которые указаны в схеме. Реле К1— РЭС-9, паспорт РС4.524.200 с сопротивлением обмотки примерно 400 Ом.

Подойдет и любое другое реле, срабатывающее при выбранном напряжении питания, но в этом случае нужно подобрать резистор R4, от которого зависит отрицательный порог срабатывания защиты.

Устройство работоспособно при изменении напряжения питания в пределах 20...30 В. При другом напряжении питания нужно будет изменить сопротивление резистора R4.

Недостаток этого устройства — необходимость питания его от источника с пульсациями не более 1 В, иначе возможны ложные срабатывания.

Замечания по схеме

Теперь добавлю от себя: подтверждаю, для устройства действительно нужен хорошо стабилизированный источник питания иначе будут частые ложные срабатывания.

Для стабилизации я использовал схему стабилизатора с регулировкой напряжения на основе микросхемы КРЕН5 (7805) - в публикации про блок питания для моего УНЧ я о ней рассказал.

В зависимости от того какое напряжение питания схемы (20...30В) придется подобрать реле с обмоткой рассчитанной на данное напряжение срабатывания, здесь главное надежное срабатывание и чтобы катушка не перегревалась от перенапряжения. У себя я нашел пачку РЭС-48 с разными паспортами, полистав справочник я выбрал те что мне подходят по напряжению.

Таким образом при срабатывании защиты транзистор VT2 закроется и напряжение через реле и резистор поступит на светодиод - что будет сигнализировать о срабатывании.

Также при включении схемы, пока работает реле времени, светодиод светится, а потом при переходе защиты в рабочий режим он гаснет. Получается простая индикация, которой вполне достаточно чтобы отследить состояние защиты.

Детали и настройка

Сопротивление гасящего резистора R5* (гасит ток, протекающий через светодиод) подбирается экспериментально. Для этого можно применить переменный резистор на 2-3кОм включенный вместо R5.

Выставляем ручку резистора в положение с максимальным сопротивлением, подаем на схему питание, а на ее вход - постоянное напряжение от другого блока питания, чтобы схема сработала и реле обесточилось.

Вращая ручку переменного резистора нужно добиться достаточно яркого свечения светодиода VD4 в момент когда транзистор VT2 закрыт и питание на светодиод идет через обмотку реле К1.

Потом этот резистор отпаиваем и измеряем его сопротивление, устанавливаем в схему постоянный резистор с таким же сопротивлением.

Еще один вариант - примерный расчет по формуле на основе закона Ома:

R_резистора = (U_питания - U_светодиода) / I_светодиода.

  • R - сопротивление, в Омах.
  • U - напряжение, в Вольтах,
  • I - ток, в Амперах.

Примем что питание схемы защиты у нас 22В, а рабочее напряжение светодиода - 2,5В с током 15мА:

R = (22В - 2,5В) / 0,015А = 1300 Ом.

Поскольку ток через светодиод в схеме будет протекать также через обмотку реле, то свечение будет менее ярким если бы вместо реле был просто проводник, но этого достаточно для индикации состояния. Важно чтобы ток через светодиод не превышал ток срабатывания/отпускания реле.

Печатные платы проектировал по старинке:

Рис. 2. Разводка печатной платы карандашом и расстановка компонентов.

В результате мною было изготовлено два экземпляра данного устройства (2+2 канала), вот что получилось:

Рис.3. Готовые устройства задержки включения и защиты акустических систем.

Приступить к наладке схемы нужно обязательно с подключенным усилителем низкой частоты (УНЧ) и акустическими системами (АС)!

Конденсатор С1 заряжается через общий провод, ток с которого идет через АС и УНЧ, а потом через резисторы R1 и R2.

Без АС и УНЧ схема не заработает так как должна работать. Если к схеме не подключить ни АС, ни усилитель мощности, то конденсатор С1 будет очень долго заряжаться через цепочку: R3 + переход Б-Э транзистора VT1.

Испытать схему можно и без АС и без усилителя НЧ. Делается это так:

  1. Вместо АС временно подключаем по резистору на 200-300 Ом (мощностью 2-5Вт)
  2. К контактам, что подключаются к усилителю, также ставим такие же резисторы на 200-300 Ом.
  3. Включаем схему, через несколько секунд должно щелкнуть реле (конденсатор С1 зарядился через резисторы которые мы подключили к входу вместо усилителя).
  4. Подавая положительные и отрицательные постоянные напряжения 10-20В с внешнего блока питания на резисторы что подключены вместо усилителя можно убедиться в работоспособности защиты от попадания постоянного напряжения на выходе усилителя, реле должно отключить резисторы, которые мы включили вместо АС.

Я разместил платки в корпусе усилителя как можно ближе к платам УМЗЧ и выходным клемам АС (на задней панели), это нужно чтобы максимально сократить длину соединительных проводников от УНЧ к защите и к клеммам для подключения АС.


Универсальный блок защиты АС выполнен на малогабаритных деталях и может быть встроен в любой усилитель, не имеющий подобной защиты. Особенность этого блока - в применении встроенного питания от сети, надёжных электромагнитных реле и светодиодной индикации появления постоянного напряжения на выходе усилителя. Устройство обеспечивает стабильную задержку и защиту даже после кратковременного пропадания сетевого напряжения.

Известно, что при подаче питания на усилитель в акустической системе (АС) может возникнуть громкий щелчок (хлопок). Чтобы устранить это явление, необходимо подключать нагрузку к выходу УМЗЧ с некоторой задержкой, достаточной для завершения всех переходных процессов (обычно 1...3 с) . При отключении же питания АС должна отключиться до момента, когда накопительные конденсаторы фильтра питания усилителя заметно разрядятся (более чем на 20 %). В противном случае процесс выключения тоже может создать неприятные призвуки или щелчки.

Представленный модуль реализует функции бесшумного включения и выключения усилителя (фактически АС), а также позволяет защитить НЧ-головки АС при появлении постоянного напряжения на выходе УМЗЧ, связанного с его аварийной работой или выходом из строя.

Технические характеристики

Напряжение питания, В...........190...264

Напряжение срабатывания защиты, В................0,6...0,7

Время задержки включения/перезапуска, с...........2,5...3

Время срабатывания защиты (U вх = 2 В), с, не более 1,4

Время срабатывания защиты (U вх = 20 В), с, не более 0,25

Время выключения модуля, с, не более..................0,25

Потребляемая мощность, Вт, не более..................2,5

Максимальный коммутируемый ток, А....................12

С реализацией задержки и защиты АС вопросов не возникает. Но как реализовать быстрое отключение АС при пропадании (относительно кратковременном) сетевого напряжения, но дос-таточном для возникновения переходного процесса и щелчка? Есть два разумных варианта: использование информации о наличии переменного напряжения в одной из существующих вторичных обмоток трансформатора, питающего УМЗЧ (как это реализовано в микросхеме μРС1237 ), или использование отдельного трансформатора питания (либо от дополнительной обмотки трансформатора УМЗЧ) для узла защиты. Первый вариант накладывает определённые ограничения, сужая универсальность модуля. Второй же позволяет использовать в питании устройства сглаживающий конденсатор небольшой ёмкости, благодаря чему блок защиты гарантированно отключит АС быстрее, чем разрядятся конденсаторы в блоке питания УМЗЧ.

Очевидно, что второй вариант - более надёжный и простой в реализации,позволяющий подключить модуль практически к любому усилителю. Недостаток такого решения - более высокая стоимость за счёт применения дополнительного блока питания, но универсальность и надёжность здесь превалируют.

Схема устройства показана на рис. 1. Его входы нужно подключать к выходам каналов стереофонического УМЗЧ, а выходы - к нагрузкам (АС) соответствующих каналов. Общий провод модуля, громкоговорителей АС (или кроссовера) подключают к общему проводу усилителя непосредственно.

Рис. 1. Схема устройства

При подаче напряжения питания конденсатор C6 медленно заряжается через резистор R10 до 1,9 В (определяется соотношением сопротивления резисторов R10 и R11), что достаточно для открывания транзистора VT4. Срабатывают реле K1, K2, и нагрузка подключается к усилителю.

При возникновении на любом из входов устройства (контакты Х2а, ХЗа) постоянного напряжения более ±0,6...0,7 В открывается соответствующий транзистор (VT1 - для напряжения плюсовой полярности, VT2 - минусовой полярности), включая излучающий диод оптопары U1 или U2. Освещённый фототранзистор оптопары через резистор R8 разряжает конденсатор С6, и полевой транзистор VT4 закрывается, обесточивая реле. Свечение светодиода HL1 индицирует отключение АС и неисправность УМЗЧ. Резистор R8 ограничивает ток разрядки конденсатора С6, а резисторный делитель R4R5 обеспечивает искусственную среднюю точку питающего напряжения.

Большинство подобных устройств защиты и задержки включения АС имеют неприятный недостаток - отсутствие задержки при рестарте за короткий промежуток времени после отключения питания. Пример такой ситуации - кратковременное пропадание электричества в сети. Этот недостаток не позволяет получить должного уровня защиты АС и всей аппаратуры в целом, где применён такой узел. Для исключения этого недостатка введены элементы R9, С5, VT3. Эта цепь кратковременно срабатывает при пропадании и появлении напряжения питания, разряжая конденсатор С6, что и обеспечивает нормальный последующий старт узла защиты. Применение полевого транзистора VT4 с пониженным напряжением открывания (примерно 1,5 В) обеспечивает меньшее напряжение заряда С6, причём время рестарта практически равно времени первого включения. При сохранении постоянных времени зарядки-разрядки конденсатора С6 его ёмкость можно существенно уменьшить, соответственно увеличив сопротивление резисторов R8-R11. Ёмкость конденсатора С1 увеличивать не рекомендуется - она определяет скорость выключения блока защиты.

При номинальном сетевом напряжении 230 В и комнатной температуре 25 о С стабилизатор DA1 нагревается до 50...52 о С. При проверке на максимальном переменном напряжении 274 В (ограничено возможностями ЛАТРа) нагрев стабилизатора составил 64...65 о С - всё в пределах нормы. Если исключить резистор R1, то нижняя допустимая граница питания блока упадёт до 170 В, но при этом увеличится нагрев DA1 в среднем на 10...12 о С. Понятно, что это изменение целесообразно лишь для местности, где напряжение в сети всегда ниже номинального.

Если представить себе ситуацию, когда оба канала УМЗЧ выходят из строя, и в первом канале на выходе образуется напряжение одной полярности, а на втором - обратной полярности, равное по модулю напряжению на выходе первого канала (с разницей менее 0,6...0,7 В), то после суммирования через резисторы R2 и R3 получится напряжение, которого недостаточно для открывания транзистора VT1 или VT2. То есть система защиты не сработает, и это является недостатком (его можно преодолеть изменением сопротивления одного из этих резисторов на ±10 %). Но вероятность такого события пренебрежимо мала и является скорее примером гипотетического моделирования отказа.

Печатная плата (рис. 2), имеющая размеры 66x45 мм, выполнена на фольгированном стеклотекстолите и рассчитана на установку транзисторов в корпусах SOT-23, резисторов типоразмера 0805 (кроме резисторов R1 и R13 - 1206), конденсаторов C2, C5 типоразмера 0805 и диода VD2 в корпусе SMA. На фото рис. 3 показана смонтированная плата со стороны пайки деталей поверхностного монтажа.

Рис. 2. Печатная плата

Рис. 3. Смонтированная плата со стороны пайки деталей поверхностного монтажа

В качестве T1 применён маломощный трансформатор ТПК-2 с вторичной обмоткой на 12 В. Диодный мост может быть любой из серий DB103S-DB107S или MB2S-MB6S, для чего на печатной плате предусмотрены два посадочных места. Диод VD2 - любой с прямым током 1 А и обратным допустимым напряжением не менее 200 В.

Обмотки реле должны быть на ток потребления не более 30 мА (повышенной чувствительности) при напряжении 12 В. Можно было бы использовать одно реле с двумя парами контактов, но автору не удалось найти такого на коммутируемый ток более 8...10 А. Достоинство указанных на схеме реле TRU-12VDC-SB-CL в том, что они имеют на контактах напыление AgCdO (серебро-окись кадмия), устойчивое к механическому износу, и максимальный коммутируемый ток 12 А. Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.

Оптопары U1, U2 можно применить практически любые с соответствующей структурой, например, PS2501, PC817. Светодиод HL1 - любой, желательно красного цвета свечения, например, из серии АЛ307 или иные.

Транзисторы VT1-VT3 могут быть заменены любыми другими маломощными транзисторами соответствующей структуры и типоразмера. Возможно использование MMBT5551, MMBT4401 (VT1, VT3) и MMBT5401, MMBT4403 (VT2).

В качестве замены n-канального полевого транзистора (ПТ) VT4 с низким пороговым напряжением затвора (Gate Threshold Voltage) можно порекомендовать NTR4003N, IRLML2502. Если подобные замены недоступны, то допустимо применить иной n-канальный ПТ с изолированным затвором, ориентируясь на сопротивление открытого канала не более 3...5 Ом, максимальное напряжение сток-исток - не менее 20 В и максимальный ток стока - не менее 300 мА. В этом случае в схему потребуется внести следующие изменения: R8 = 75 Ом, R10 = R11 = 68 кОм, C6 = 47 мкФ на 16 В. Но следует помнить, что время задержки при быстром рестарте немного уменьшится. Так как пороговый уровень включения у различных ПТ может значительно отличаться, то, возможно, потребуется подкорректировать время задержки включения реле подбором пары резисторов R10, R11 из условия их равенства.

Плавкую вставку FU1 можно использовать на ток 0,16 или 0,25 А, например, отечественную ВП4-10 0,2 А, имеющую малые габариты и гибкие выводы для монтажа на плату. Клеммники X1-X3 - серии DG127, XY304 или аналогичные. Как видно из схемы, центральный контакт в X1 не используется. Это сделано для того, чтобы увеличить зазор между проводниками сетевого питания.

Собранное устройство (его фото на рис. 4) не нуждается в налаживании и работает сразу после подачи питания. Его конструкция повторена много раз, и высокая надёжность подтверждена длительной эксплуатацией.

Рис. 4. Собранное устройство

На рис. 5 представлена схема, позволяющая исключить малогабаритный трансформатор. В качестве примера показана упрощённая схема блока питания УМЗЧ с напряжением +/-30 В. При этом немного изменены как схема, так и способ подключения модуля к усилителю.

Рис. 5. Схема, позволяющая исключить малогабаритный трансформатор

Модуль имеет двухполярное питание через гасящие резисторы R8, R9, поэтому формирование искусственной средней точки не требуется (резисторы R4, R5 на рис. 2). Для большей эффективности реле включены последовательно и добавлен конденсатор (C4) в качестве фильтра питания.

На компонентах VD1, R5, C3 выполнен однополупериодный выпрямитель, напряжение с которого подаётся на оптопару U3. В исходном состоянии за счёт резистора R10 транзистор VT3 находится в режиме насыщения, шунтируя конденсатор С5 до тех пор, пока не появится напряжение на излучающем диоде оптопары U3, после чего VT3 закрывается и С5 начинает медленно заряжаться, открывая транзистор VT4. При этом общее время задержки подключения нагрузки достигает 2...2,5 с.

При выключении усилителя конденсатор С3 быстро разряжается, обесточивая оптопару U3. Транзистор VT3 открывается и разряжает конденсатор C5, вследствие чего отключаются реле с нагрузкой. Таким образом, реализуется механизм быстрого выключения с общим временем не более 0,3...0,5 с.

Последующий старт включения происходит с разряженным конденсатором C5, поэтому, в отличие от схемы на рис. 2, его принудительная разрядка не требуется.

В качестве VT4 можно применить n-канальный ПТ с пороговым напряжением открывания 2...5 В и максимальным током стока не менее 1 А, например, IRF510-IRF540, IRF610-IRF640. Выпрямительный диод VD1 - любой с обратным напряжением не менее 100 В и прямым током от 100 мА: SF12-SF16, 1 N4002-1N4007 и пр. При использовании реле с обмотками, потребляющими ток 50 мА, необходимо изменить номиналы резисторов R8, R9 на 330 Ом.

Примечание: Для повышения надёжности работы между базой и эмиттером транзистора VT3 (рис. 1) надо установить резистор сопротивлением 50...100 кОм.

Литература

1. Атаев Д. И., Болотников В. А. Функциональные узлы усилителей высококачественного звуковоспроизведения. - М.: Радио и связь, 1989, с. 120.

2. UPC1237. Protector IC for stereo power amplifier. - URL: http://www.unisonic.com. tw/datasheet/UPCI 237.pdf (21.03.16).


Дата публикации: 10.07.2016

Мнения читателей
  • Rymkin / 05.02.2019 - 03:06
    Здравствуйте! Можно ли применить трансформатор на 15 вольт? В статье опечатка,"Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.", на самом деле марка реле SRD (T73) 12VDС-SL-С.

Данный проект защиты акустики повзаимствован на одном из португальских сайтов. Кроме защиты от постоянки блок обеспечивает задержку подключения колонок к выходу усилителя мощности примерно от 3 до 10 секунд, устраняя при этом щелчки при включении питания усилителя. Принципиальная схема:

В схеме применены реле на напряжение 12 Вольт с одной группой переключающихся контактов, способных держать ток 6...8 Ампер.

В статье оригинале были приведены следующие изображения печатной платы:

И вид платы PCB формата:

Используя данные изображения мы нарисовали плату защиты в программе Sprint Layout. LAY6 формат выглядит так:

Фото-вид печатной платы защиты акустики LAY6 формата:

Фольгированный стеклотекстолит односторонний. Размер платы мы чуток уменьшили, теперь он стал 45 х 75 мм.

В качестве блока питания схемы применен обычный параметрический стабилизатор, напряжение стабилизации 12 Вольт. Схема показана ниже:

Надеемся для вас не составит труда расчитать номинал токоограничивающего резистора для стабилитрона, на схеме он указан стрелкой. Его номинал будет зависеть от того, какое напряжение у вас будет после диодного моста. Так же БП можно реализовать на LM7812.

Подключение блока защиты и акустики к усилителю мощности показано на следующем изображении:

Список элементов схемы блока защиты акустики:

Реле 12 Вольт - 2 шт.
Транзисторы 2SC945 - 2 шт.
Транзистор 2SC9013 – 1 шт.
Диоды 1N4007 – 5 шт.
Электролитические конденсаторы 220 uF/ 50V – 2 шт.
Резисторы 10 кОм – 4 шт.
Резистор 1 кОм – 1 шт.
Резистор 39 кОм – 1 шт.
Разъемы 2 Pin – по усмотрению
Подстроечный резистор 220...500 кОм – 1 шт.
Стабилитрон 12 Вольт 1 Ватт – 1 шт. (например импортный 1N4742A)

Плата блока защиты акустики в сборе:

Ссылка на скачивание архива со схемой и печатной платой LAY6 формата появится на этой же странице после клика по любой строке рекламного блока ниже кроме строки “Оплаченная реклама”. Размер файла – 0,3 Mb.