Вирусы слишком малы, чтобы их можно было разглядывать под обычным микроскопом. Поэтому их разглядывают под микроскопом электронным.
Давайте взглянем на некоторых из них:

Тут мы видим два вируса – слева стрелочкой показан ротавирус , справа – аденовирус . Видно, что он аденовирус имеет форму икосаэдра, а ротавирус – покрытый пупырышками шарик. Оба найдены в стуле ребенка с диареей (вызваной ротавирусом).



Кстати, заметьте технологический прогресс. Тут тоже изображен аденовирус, но деталей практически не разглядеть. Это статья 1984 года, а выше была – 2003.


Парвовирус . Он существенно меньше предыдущих двух (масштаб показан на обоих картинках). Даже под электронным микроскопом парвовирус разглядеть трудно.


А это родственник оспы. Овальная форма, примерно 200 нм в длину.


Вирус полиомиелита . Очень маленький, но очень зловредный. РНК, заключенная в белковую оболочку. Шкала - 100 нм.


Вирус гриппа . Покрыт липидной оболочкой, упорядоченной внутренней структуры не имеет. Видно, что вся его поверхность покрыта белками оболочки - HA и NA. Шкала - 100 нм.


А это клетки, зараженные вирусом Nodamura . Вирус собирается и накапливается внутри клеток, ему не нужно быть покрытым клеточной мембраной. Когда клетка переполняется, она лопается и вирусы выходят наружу.


А это клетки, зараженные вирусом SARS . Он собирает свой капсид около клеточной мембраны и потом отпочковывается от клетки, унося вместе с ней кусочек ее мембраны. Поэтому новые вирусные частицы выходят из клетки постепенно. Стрелкой показана вирусная частица в процессе сборки. Видно, что вирусные частицы находятся в пространстве между клетками.


Довольно старая, но неплохая фотография

«Ну вот опять подцепил вирус!» Так, пристально всматриваясь в шкалу горячего градусника, родители сообщают нам о существовании этих загадочных мелких пакостников. Помимо досады, в голосе взрослых читаются тревожные нотки. Наверно, не всякий родитель знает, что слово «вирус» с латыни переводится как «яд», но все точно слышали о великих эпидемиях прошлого и смертельных угрозах, таящихся в современных мегаполисах, - о гриппе, гепатите, СПИДе... Так что же это за существа или вещества такие - вирусы? И все ли они так страшны?

Вообще, вирусы прекрасны. Они прекрасно выглядят и прекрасно приспособлены к использованию в своих целях любых живых организмов: животных, растений, грибов, простейших, бактерий и архей. И даже неклеточных созданий, братьев-вирусов.

Как вирусы устроены?

В простейшем случае вирус состоит из генома (одно- или двухцепочечной молекулы нуклеиновой кислоты) и белковой оболочки. Если оболочки нет, то объект не дотягивает до звания вируса и довольствуется именем вироид . Нуклеиновая кислота - ДНК или РНК - кодирует необходимые для размножения вируса белки. У одних вирусов геном содержит инструкции для построения всего парочки белков, у других - двух тысяч и более. Белковая оболочка, или капсид , защищает нуклеиновую кислоту от повреждений и состоит из нескольких повторяющихся деталей - капсомеров , которые, в свою очередь, построены из молекул одного или нескольких типов белка. Капсид может иметь форму икосаэдра (двадцатигранника, но не всегда правильного), нити или палочки, а может сочетать разные формы: например, у большинства вирусов бактерий - бактериофагов - икосаэдрическая «головка» насажена, как эскимо, на палочковидный полый отросток .

Но далеко не все вирусы устроены так просто: некоторые покрываются сверху дополнительной, сворованной у хозяина и слегка измененной липидной мембраной , нашпигованной хозяйскими и вирусными белками - они очень полезны для инфицирования новых клеток. Так делают, например, вирусы гриппа и иммунодефицита человека (ВИЧ). Совсем сложные вирусы, например, вирус осповакцины или мимивирус, могут похвастать многослойной «одеждой». Они способны перетаскивать в своих частицах много полезных молекул - ферментов и факторов, необходимых для построения новых вирионов. Большинство же вирусов вынуждено полагаться только на хозяйскую систему синтеза белка.

Как вирусы размножаются?

Если живая клетка размножается делением, то вирус многократно копирует свои «запчасти» в пораженной клетке. Любая клетка любого организма ему не подходит - нужна особенная, которую вирус узнает по специальным молекулам на клеточной поверхности, рецепторам . Поэтому человеку не страшны многие вирусы других млекопитающих, а ВИЧ может начать свою подрывную деятельность только после контакта с конкретными клетками иммунной системы. Когда долгожданная встреча происходит, вирус проникает в клетку через повреждения (так любят делать вирусы растений) либо путем слияния своей внешней оболочки с клеточной мембраной, а может впрыскивать, как шприцем, свой геном через клеточную стенку (так поступает большинство бактериофагов) либо заглатываться самόй клеткой, не заметившей подвоха.

В клетке вирус полностью или частично «раздевается». Если геном вируса представлен ДНК, то процесс его копирования, или репликации , происходит в клеточном ядре. Большинство вирусов уже с этого этапа начинает эксплуатировать чужие, хозяйские ферменты. Чтобы наработать другие компоненты вириона, необходимо переписать информацию, содержащуюся в ДНК, немного другим языком. Начинается транскрипция : по копиям ДНК синтезируются нити РНК - посредники, которые будут передавать (транслировать ) хранящиеся в ДНК инструкции клеточным машинам, производящим белок. Только на основе таких посредников могут строиться белки. Происходит это уже в цитоплазме и, конечно, на хозяйском оборудовании - рибосомах . То есть вирус вынуждает клетку работать только на него и жертвовать своими потребностями. Клетка страдает от дефицита собственных и наработки чужих веществ и даже может покончить с собой. Но и без того участь ее незавидна. Новые компоненты вирусного капсида связываются с новыми молекулами нуклеиновой кислоты - происходит самосборка вирионов, которые могут по-партизански отпочковаться от клетки, укутавшись ее мембраной, а могут выскочить в едином лихом порыве, и покалеченная клетка лопнет (лизируется ).

Самые предусмотрительные вирусы затаиваются «наглухо», пока не почувствуют, что настал подходящий момент для активного размножения. Таковы, например, герпесвирусы и некоторые бактериофаги. Некоторые из них так и не успевают пробудиться.

А вирусы вирусов вообще редко вредят своим «хозяевам». Да и хозяевами-то вирусы назвать сложно. Просто их фабриками по производству вирионов начинают без спроса пользоваться вирусы-приживалы. Правда, отдельные виды - вирофаги - могут способствовать выживанию клеток, страдающих от этих самых «хозяев» .

Все ли вирусы - злодеи?

От вирусов страдает не только человек, но и животные, и растения. Однако такие сложные живые организмы сталкивались с вирусами уже с момента своего возникновения и потому приспособились к совместному сосуществованию с большинством из них. Да и вирусу, как правило, незачем убивать хозяев - тогда ведь придется всё время искать новых, и если в скученных бактериальных сообществах это не так уж и сложно, то вот в человеческих...

С большинством вирусов прекрасно справляются защитные системы нашего организма, поэтому для лечения нетяжелых кишечных расстройств и «простуд», вызываемых разнообразными агентами, ничего особенного даже и изобретать не стали. Пока ищешь истинного виновника, человек уже выздоравливает. Более того, вирусы могут быть и нашими союзниками: на примере вирусов биологи изучают разные молекулярные процессы, их же используют для генной инженерии; в то же время бактериофаги умеют расправляться с болезнетворными бактериями , а некоторые «спящие» герпесвирусы, возможно, способны защищать от заражения... чумой.

Но если отвлечься от добрых и злых, с точки зрения человека, дел вирусов, то нужно признать, что на этих невидимках во многом держится наш мир: они переносят свои и чужие гены от организма к организму, увеличивая генетическое разнообразие, регулируют численность сообществ живых существ и просто необходимы для круговорота биогенных элементов , ведь вирусы - самые многочисленные биообъекты на нашей планете.

2.4.1. Открытие

В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, задерживающий , отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово «вирус» (от латинского слова, означающего «яд»), чтобы обозначить этим словом инфекционную природу определенных профильтрованных растительных жидкостей. Хотя удалось достичь значительных успехов в получении высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины (сложные соединения, состоящие из и нуклеиновых кислот), сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового . Именно поэтому вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в тридцатые годы XX столетия.

2.4.2. Свойства вирусов

Вирусы обладают следующими свойствами.

Ниже мы рассмотрим эти свойства более подробно.

Размеры

Вирусы – это мельчайшие живые организмы, размеры которых варьируют в пределах от 20 до 300 нм; в среднем они раз в пятьдесят меньше . Их нельзя увидеть с помощью светового микроскопа, и они проходят через фильтры, не пропускающие бактерий.

Происхождение

Исследователи часто задаются вопросом, живые ли вирусы? Если считать живой любую структуру, обладающую генетическим материалом (ДНК или РНК) и способную к самовоспроизведению, то ответ должен быть утвердительным: да, вирусы – живые. Если же признаком живого считать наличие клеточного строения, то ответ будет отрицательным: вирусы не живые. К этому следует добавить, что вне клетки-хозяина вирусы неспособны к самовоспроизведению.

Для более полного представления о вирусах необходимо знать их происхождение в процессе эволюции. Существует предположение, хотя и недоказанное, что вирусы – это генетический материал, некогда «сбежавший» из прокариотических и эукариотических клеток и сохранивший способность к воспроизведению при возвращении в клеточное окружение. Вне клетки вирусы находятся в совершенно инертном состоянии, однако они обладают набором инструкций (генетическим кодом), необходимых для того, чтобы вновь проникнуть в клетку и, подчинив ее своим инструкциям, заставить производить много идентичных себе (вирусу) копий. Следовательно, логично предположить, что в процессе эволюции вирусы появились позже клеток.

Строение

Строение вирусов очень простое. Они состоят из следующих структур:

  1. сердцевины – генетического материала, представленного либо ДНК, либо РНК; ДНК или РНК может быть одноцепочечной или двухцепочечной;
  2. капсида – защитной белковой оболочки, окружающей сердцевину;
  3. нуклеокапсида – сложной структуры, образованной сердцевиной и капсидом;
  4. оболочки – у некоторых вирусов, таких как ВИЧ и вирусы гриппа, имеется дополнительный липопротеиновый слой, происходящий из плазматической мембраны клетки-хозяина;
  5. капсомеров – идентичных повторяющихся субъединиц, из которых часто бывают построены капсиды.
  6. Рис. 2.16. Схематическое изображение вируса в разрезе.

    Общая форма капсида отличается высокой степенью симметрии, обусловливая способность вирусов к кристаллизации. Это дает возможность исследовать их как методом рентгеновской кристаллографии, так и с помощью электронной микроскопии. Как только в клетке-хозяине образуются субъединицы вируса, они сразу же могут путем самосборки объединиться в полную вирусную частицу. Упрощенная схема строения вируса показана на рис. 2.16.

    Рис. 2.17. А. Икосаэдр. Б. Электронная микрофотография вируса простого герпеса, полученная методом негативного контрастирования (окрашивается не сам препарат, а его фон). Обратите внимание, насколько отчетливо видны детали строения вируса. Индивидуальные капсомеры просматриваются как раз там, где между ними проник краситель.

    Для структуры капсида характерны определенные типы симметрии, особенно полиэдрическая и спиральная. Полиэдр – это многогранник. Наиболее распространенная полиэдрическая форма у вирусов – икосаэдр, у которого имеется 20 треугольных граней, 12 углов и 30 ребер. На рис. 2.17, А мы видим правильный икосаэдр, а на рис. 2.17, Б – вирус герпеса, в частице которого 162 капсомера организованы в икосаэдр.

    Рис. 2.18. А. Строение вируса табачной мозаики (ВТМ); видна спиральная симметрия капсида. Показана только часть палочковидного вируса. Рисунок построен на основе результатов рентгено-структурного анализа, биохимических данных и электронно-микроскопических исследований. Б. Электронная микрофотография вируса табачной мозаики, полученная методом негативного контрастирования (х 800 000). Капсид (оболочка) образован 2130 идентичными белковыми капсомерами. В. Растение табака, инфицированное ВТМ. Обратите внимание на характерные пятна в тех местах, где ткань листа отмирает.

    Наглядной иллюстрацией спиральной симметрии может служить показанный на рис. 2.18, Б РНК-содержащий вирус табачной мозаики (ВТМ). Капсид этого вируса образован 2130 идентичными белковыми капсомерами. ВТМ был первым вирусом, выделенным в чистом виде. При заражении этим вирусом на листьях больного растения появляются желтые крапинки – так называемая мозаика листьев (рис. 2.18, В). Вирусы распространяются очень быстро либо механически, когда больные растения или его части приходят в соприкосновение со здоровыми растениям, либо воздушным путем с дымом от сигарет, для изготовления которых были использованы зараженные листья.

    Рис. 2.19. А. Строение бактериофага Т2. Б. Электронная микрофотография бактериофага, полученная методом негативного контрастирования.

    Вирусы, атакующие бактерий, образуют группу, называемую бактериофагами или просто фагами. У некоторых бактериофагов имеются четко выраженная икосаэдрическая головка и хвост, обладающий спиральной симметрией (рис. 2.19). На рис. 2.20 и 2.21 приводятся схематические изображения некоторых вирусов, иллюстрирующие их относительные размеры и общее строение.

    Рис. 2.20. Несколько упрощенных схематических изображений вирусов, отражающих различие их симметрии и размеров. Фаг Т2 показан с нитями хвостового отростка, которые фаг выпускает перед тем как инфицировать клетку; у фага? нитей хвостового отростка нет.

    Рис. 2.21. Строение вируса иммунодефицита человека (ВИЧ), относящегося к ретровирусам. Конусовидный капсид состоит из уложенных по спирали капсомеров. Спереди капсид срезан, чтобы были видны две копии РНК-геномов. Под действием фермента, называемого обратной транскриптазой, информация, закодированная в этих одноцепочечных РНК-цепях, транскрибируется в соответствующие двухцепочечные ДНК-нити. Капсид окружен белковой оболочкой, заякоренной в липидном бислое – оболочке, полученной от плазматической мембраны клетки-хозяина. В этой оболочке содержатся встроенные в нее вирусные гликопротеины, которые, специфически связываясь с рецепторами Т-клеток, обеспечивают проникновение вируса в клетку-хозяина.

Бытует мнение что животные, растения и человек численностью преобладают на планете Земля. Но это на самом деле не так. В мире существует бесчисленное количество микроорганизмов (микробов). И вирусы являются одними из самых опасных. Они могут стать причиной различных заболеваний человека и животных. Ниже представлен список десяти самых опасных биологических вирусов для человека.

Хантавирусы - род вирусов, передающийся человеку при контакте с грызунами или продуктами их жизнедеятельности. Хантавирусы вызывают различные болезни, относящиеся к таким группам заболеваний, как «геморрагическая лихорадка с почечным синдромом» (смертность в среднем 12%) и «хантавирусный кардиопульмональный синдром» (смертность до 36%). Первая крупная вспышка заболевания, вызванная хантавирусами и известная как «Корейская геморрагическая лихорадка», произошла во время корейской войны (1950–1953). Тогда более 3 000 американских и корейских солдат ощутили на себе воздействие неизвестного на то время вируса вызывавшего внутреннее кровотечение и нарушение функций почек. Интересно, что именно этот вирус считается вероятной причиной возникновения эпидемии в XVI веке, которая истребила народность ацтеков.


Вирус гриппа - вирус, вызывающий у человека острое инфекционное заболевание дыхательных путей. В настоящее время существует более 2 тыс. его вариантов, классифицирующиеся по трём серотипам А, В, С. Группа вируса из серотипа А разделённая на штаммы (H1N1, H2N2, H3N2 и т. д.) является наиболее опасной для человека и может привести к эпидемии и пандемии. Ежегодно в мире от сезонных эпидемий гриппа умирает от 250 до 500 тыс. человек (большинство из них дети младше 2 лет и пожилые люди старше 65 лет).


Вирус Марбург - опасный вирус человека, впервые описанный в 1967 году во время небольших вспышек в немецких городах Марбург и Франкфурт. У человека вызывает геморрагическую лихорадку Марбург (смертность 23-50%), которая передаётся через кровь, кал, слюну и рвотные массы. Естественным резервуаром для данного вируса служат больные люди, вероятно, грызуны и некоторые виды обезьян. Симптомы на ранних стадиях включают в себя лихорадку, головную боль и боль в мышцах. На поздних - желтуху, панкреатиты, потерю веса, делирий и нейропсихиатрические симптомы, кровотечение, гиповолемический шок и множественный отказ органов, чаще всего печени. Лихорадка Марбург входит в десятку смертельных болезней передавшихся от животных .


Шестое место в списке самых опасных вирусов человека занимает Ротавирус - группа вирусов, являющиеся наиболее распространённой причиной острой диареи у младенцев и детей младшего возраста. Передаётся фекально-оральным путём. Эта болезнь обычно легко лечится, но в мире ежегодно умирает более 450 000 детей в возрасте до пяти лет, большинство из которых живут в слаборазвитых странах.


Вирус Эбола - род вирусов, вызывающий геморрагическую лихорадку Эбола. Впервые был открыт в 1976 году во время вспышки заболевания в бассейне реки Эбола (отсюда и название вируса) в Заире, ДР Конго. Передаётся при прямом контакте с кровью, выделениями, другими жидкостями и органами инфицированного человека. Для лихорадки Эбола характерны внезапное повышение температуры тела, выраженная общая слабость, мышечные и головные боли, а также боли в горле. Зачастую сопровождается рвотой, диареей, сыпью, нарушением функций почек и печени, а в некоторых случаях внутренними и внешними кровотечениями. По данным центра контроля заболеваний США, на 2015 год лихорадкой Эбола инфицировано 30 939 человек, из которых умерли 12 910 (42%).


Вирус денге - один из самых опасных биологических вирусов для человека, вызывающий Лихорадку денге, в тяжёлых случаях, которой смертность составляет около 50%. Болезнь характеризуется лихорадкой, интоксикацией, миалгией, артралгией, сыпью и увеличением лимфатических узлов. Встречается в основном в странах Южной и Юго-Восточной Азии, Африки, Океании и Карибского бассейна, где ежегодно заражается около 50 миллионов человек. Разносчиками вируса является больной человек, обезьяны, комары и летучие мыши.


Вирус оспы - сложный вирус, возбудитель высокозаразного одноимённого заболевания, поражающего только человека. Это одно из древнейших заболеваний, симптомами которого является озноб, боль в области крестца и поясницы, быстрое повышение температуры тела, головокружение, головная боль, рвота. На второй день появляются сыпь, которая со временем превращается в гнойные пузырьки. В XX веке этот вирус унёс жизни 300–500 миллионов человек. На кампанию по борьбе с оспой, с 1967 по 1979 годы было потрачено около 298 миллионов долларов США (в 2010 году эквивалент 1,2 миллиарда долларов). К счастью, последний известный случай заражения был зарегистрирован 26 октября 1977 года в сомалийском городе Марка.


Вирус бешенства - опасный вирус, вызывающий бешенство у человека и теплокровных животных, при котором происходит специфическое поражение центральной нервной системы. Эта болезнь передаётся со слюной при укусе инфицированного животного. Сопровождается повышением температуры до 37,2–37,3, плохим сном, больные становятся агрессивными, буйными, появляются галлюцинации, бред, чувство страха, вскоре наступает паралич глазных мышц, нижних конечностей, паралитические расстройства дыхания и смерть. Первые признаки болезни возникают поздно, когда в мозгу уже произошли разрушительные процессы (отёк, кровоизлияние, деградация нервных клеток), что делает лечение практически невозможным. На сегодня зафиксировано только три случая выздоровления человека без применения вакцинации, все остальные заканчивались смертью.


Вирус Ласса - смертельный вирус, являющийся возбудителем лихорадки Ласса у человека и приматов. Болезнь впервые была обнаружена в 1969 году в нигерийском городе Ласса. Характеризуется тяжёлым течением, поражением органов дыхания, почек, центральной нервной системы, миокардитом и геморрагическим синдромом. Встречается она преимущественно в странах Западной Африки, особенно в Сьерра-Леоне, Республике Гвинея, Нигерии и Либерии, где ежегодная заболеваемость составляет от 300 000 до 500 000 случаев, из которых 5 тыс. приводит к смерти пациента. Природным резервуаром лихорадки Ласса являются многососковые крысы.


Вирус иммунодефицита человека (ВИЧ) - самый опасный вирус человека, возбудитель ВИЧ-инфекции/СПИД, который передаётся через прямой контакт слизистых оболочек или крови с жидкостью телесного происхождения больного. В ходе ВИЧ-инфекции у одного и того же человека формируются все новые штаммы (разновидности) вируса, которые являются мутантами, совершенно разные по скорости воспроизведения, способные инициировать и убивать те или другие типы клеток. Без врачебного вмешательства средняя продолжительность жизни человека заражённого вирусом иммунодефицита составляет 9–11 лет. По данным на 2011 год, в мире за всё время ВИЧ-инфекцией заболели 60 миллионов человек, из них: 25 миллионов умерли, а 35 млн. продолжает жить с вирусом.

Грипп – опасное острое респираторное заболевание, известное человечеству с древности. Долгое время считалось, что данное недомогание вызывают бактерии, но с появлением мощных микроскопов эта теория была опровергнута. Ученые смогли узнать, как выглядит вирус гриппа, определить особенности его различных штаммов и на основании этого разработать специфические противовирусные препараты.

Вирусные частицы под микроскопом

По строению вирус гриппа сходен с возбудителями других инфекционных заболеваний. В его состав входят.

  • РНК – нуклеиновая кислота, в которой содержится наследственная информация вируса.
  • Капсид – двойная белковая оболочка.
  • Поверхностные белки – гемагглютинин и нейроминидаза.

Всего существует 16 типов гемагглютинина (H1-H16) и 9 типов нейроминидазы (N1-N9). В зависимости от их сочетания получаются определенные штаммы вируса гриппа. На данный момент ученым известно 115 вариантов из 144 возможных, таким образом, специалисты ожидают возникновение новых штаммов вируса гриппа в будущем.

Строение вируса гриппа

Гриппозная инфекция может быть вызвана типами вирусов А, В и С. Самым опасным в эпидемиологическом плане и наиболее изученным является грипп А. Из-за мутаций и изменения комбинации поверхностных белков (гемагглютинина и нейроминидазы) регулярно возникают новые штаммы микроорганизма, которые приводят к масштабным пандемиям.

Внешне вирус напоминает собой морского ежа – микроскопическая, покрытая шипами сфера диаметром 100 нм, но в свежих препаратах иногда обнаруживаются более крупные нитевидные формы.

Рассматривая вирусы гриппа под микроскопом, можно увидеть такие структуры:

  1. В центральной части микроорганизма содержится рибонуклеопротеид, который состоит из 8 фрагментов, несущих в себе РНК. Каждый из первых шести фрагментов отвечает за синтез одного белка, седьмой и восьмой фрагменты кодируют по 2 белковых молекулы. Отличительной чертой вируса гриппа является поверхностная локализация кодирующей нуклеиновой кислоты в составе рибонуклеопротеида.
  2. Нуклеокапсид – комплекс, состоящий из генома вируса и защитной оболочки (капсида). У вируса гриппа он представляет собой трубчатое образование диаметром 70 А, уложенное в суперспираль с внешним диаметром 300 А и размером витка 80–100 А. В состав нуклеокапсида входят внутренние белки вируса.
  3. Суперкапсид – оболочка, состоящая из липопротеиновой мембраны, полученной от клетки, в которой размножался вирус, и поверхностных белковых антигенов (нейроминидазы и гемагглютинина), встроенных в нее в виде небольших шипов. Внутренняя оболочка суперкапсида представлена матричным белком вируса.
  4. Шип гемагглютинина представлен палочкообразной структурой длиной 14 нм, состоящей из трех H-полпептидов.
  5. Шип нейроминидазы содержит в себе четыре N-полипептида и представлен палочкообразной структурой с утолщением на внешнем конце. С другой стороны шип прикрепляется к тонкому «хвосту» длиной 8 нм, погруженному в липидный слой мембраны.

Шипы вируса – вторая по важности структура после РНК. Именно благодаря им микроорганизм прикрепляется к поверхности и проникает внутрь клетки. Если удалить эти образования жирорастворителем или специальным детергентом, вирус инактивируется.