Цель отладки программы - устранение ошибок в её коде. Для этого вам, скорее всего, придётся исследовать состояние переменных во время выполнения , равно как и сам процесс выполнения (например, отслеживать условные переходы). Тут отладчик - наш первый помощник. Конечно же, в Си достаточно много возможностей отладки без непосредственной остановки программы: от простогоprintf(3) до специальных систем ведения логов по сети и syslog . В ассемблере такие методы тоже применимы, но вам может понадобиться наблюдение за состоянием регистров, образ ( dump ) оперативной памяти и другие вещи, которые гораздо удобнее сделать в интерактивном отладчике. В общем, если вы пишете на ассемблере, то без отладчика вы вряд ли обойдётесь.

Начать отладку можно с определения точки останова ( breakpoint ), если вы уже приблизительно знаете, какой участок кода нужно исследовать. Этот способ используется чаще всего: ставим точку останова, запускам программу и проходим её выполнение по шагам, попутно наблюдая за необходимыми переменными и регистрами. Вы также можете просто запустить программу под отладчиком и поймать момент, когда она аварийно завершается из-за segmentation fault, - так можно узнать, какая инструкция пытается получить доступ к памяти, подробнее рассмотреть приводящую к ошибке переменную и так далее. Теперь можно исследовать этот код ещё раз, пройти его по шагам, поставив точку останова чуть раньше момента сбоя.

Начнём с простого. Возьмём программу Hello world и скомпилируем её с отладочной информацией при помощи ключа компилятора -g :

$ gcc -g hello.s -o hello $

Запускаем gdb:

$ gdb ./hello GNU gdb 6.4.90-debian Copyright (C) 2006 Free Software Foundation, Inc. GDB is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. Type "show copying" to see the conditions. There is absolutely no warranty for GDB. Type "show warranty" for details. This GDB was configured as "i486-linux-gnu"...Using host libthread_db library "/lib/tls/libthread_db.so.1". (gdb)

GDB запустился, загрузил исследуемую программу, вывел на экран приглашение (gdb) и ждёт команд. Мы хотим пройти программу "по шагам" ( single-step mode ). Для этого нужно указать команду, на которой программа должна остановиться. Можно указать подпрограмму - тогда остановка будет осуществлена перед началом исполнения инструкций этой подпрограммы. Ещё можно указать имя файла и номер строки.

(gdb) b main Breakpoint 1 at 0x8048324: file hello.s, line 17. (gdb)

b - сокращение от break . Все команды в GDB можно сокращать, если это не создаёт двусмысленных расшифровок. Запускаем программу командой run . Эта же команда используется для перезапуска ранее запущенной программы.

(gdb) r Starting program: /tmp/hello Breakpoint 1, main () at hello.s:17 17 movl $4, %eax /* поместить номер системного вызова write = 4 Current language: auto; currently asm (gdb)

GDB остановил программу и ждёт команд. Вы видите команду вашей программы, которая будет выполнена следующей, имя функции , которая сейчас исполняется, имя файла и номер строки. Для пошагового исполнения у нас есть две команды: step (сокращённо s ) и next (сокращённо n ). Команда step производит выполнение программы с заходом в тела подпрограмм. Команда next выполняет пошагово только инструкции текущей подпрограммы.

(gdb) n 20 movl $1, %ebx /* первый параметр - в регистр %ebx */ (gdb)

Итак, инструкция на строке 17 выполнена, и мы ожидаем, что в регистре %eax находится число 4. Для вывода на экран различных выражений используется команда print (сокращённо p ). В отличие от команд ассемблера, GDB в записи регистров использует знак $ вместо % . Посмотрим, что в регистре %eax :

(gdb) p $eax $1 = 4 (gdb)

Действительно 4! GDB нумерует все выведенные выражения. Сейчас мы видим первое выражение ($1 ), которое равно 4. Теперь к этому выражению можно обращаться по имени. Также можно производить простые вычисления:

(gdb) p $1 $2 = 4 (gdb) p $1 + 10 $3 = 14 (gdb) p 0x10 + 0x1f $4 = 47 (gdb)

Пока мы играли с командой print , мы уже забыли, какая инструкция исполняется следующей. Команда info line выводит информацию об указанной строке кода. Без аргументов выводит информацию о текущей строке.

(gdb) info line Line 20 of "hello.s" starts at address 0x8048329 and ends at 0x804832e . (gdb)

Команда list (сокращённо l ) выводит на экран исходный код вашей программы. В качестве аргументов ей можно передать:

  • номер_строки - номер строки в текущем файле;
  • файл:номер_строки - номер строки в указанном файле;
  • имя_функции - имя функции, если нет неоднозначности;
  • файл:имя_функции - имя функции в указанном файле;
  • *адрес - адрес в памяти, по которому расположена необходимая инструкция.

Если передавать один аргумент , команда list выведет 10 строк исходного кода вокруг этого места. Передавая два аргумента, вы указываете строку начала и строку конца листинга.

(gdb) l main 12 за пределами этого файла */ 13 .type main, @function /* main - функция (а не данные) */ 14 15 16 main: 17 movl $4, %eax /* поместить номер системного вызова 18 write = 4 в регистр %eax */ 19 20 movl $1, %ebx /* первый параметр поместить в регистр 21 %ebx; номер файлового дескриптора 22 stdout = 1 */ (gdb) l *$eip 0x8048329 is at hello.s:20. 15 16 main: 17 movl $4, %eax /* поместить номер системного вызова 18 write = 4 в регистр %eax */ 19 20 movl $1, %ebx /* первый параметр поместить в регистр 21 %ebx; номер файлового дескриптора 22 stdout = 1 */ 23 movl $hello_str, %ecx /* второй параметр поместить в 24 регистр %ecx; указатель на строку */ (gdb) l 20, 25 20 movl $1, %ebx /* первый параметр поместить в регистр 21 %ebx; номер файлового дескриптора 22 stdout = 1 */ 23 movl $hello_str, %ecx /* второй параметр поместить в 24 регистр %ecx; указатель на строку */ 25 (gdb)

Запомните эту команду: list *$eip . С её помощью вы всегда можете просмотреть исходный код вокруг инструкции, выполняющейся в текущий момент. Выполняем нашу программу дальше:

(gdb) n 23 movl $hello_str, %ecx /* второй параметр поместить в регистр %ecx (gdb) n 26 movl $hello_str_length, %edx /* третий параметр поместить в регистр %edx (gdb)

Не правда ли, утомительно каждый раз нажимать n ? Если просто нажать Enter , GDB повторит последнюю команду:

(gdb) 29 int $0x80 /* вызвать прерывание 0x80 */ (gdb) Hello, world! 31 movl $1, %eax /* номер системного вызова exit = 1 */ (gdb)

Ещё одна удобная команда , о которой стоит знать - info registers . Конечно же, её можно сократить до i r . Ей можно передать параметр - список регистров, которые необходимо напечатать. Например, когда выполнение происходит в защищённом режиме, нам вряд ли будут интересны значения сегментных регистров.

(gdb) info registers eax 0xe 14 ecx 0x804955c 134518108 edx 0xe 14 ebx 0x1 1 esp 0xbfabb55c 0xbfabb55c ebp 0xbfabb5a8 0xbfabb5a8 esi 0x0 0 edi 0xb7f6bcc0 -1208566592 eip 0x804833a 0x804833a eflags 0x246 [ PF ZF IF ] cs 0x73 115 ss 0x7b 123 ds 0x7b 123 es 0x7b 123 fs 0x0 0 gs 0x33 51 (gdb) info registers eax ecx edx ebx esp ebp esi edi eip eflags eax 0xe 14 ecx 0x804955c 134518108 edx 0xe 14 ebx 0x1 1 esp 0xbfabb55c 0xbfabb55c ebp 0xbfabb5a8 0xbfabb5a8 esi 0x0 0 edi 0xb7f6bcc0 -1208566592 eip 0x804833a 0x804833a eflags 0x246 [ PF ZF IF ] (gdb)

Так, а кроме регистров у нас ведь есть ещё и

Ошибки, к сожалению, встречаются в любой программе, каким бы крутым профессионалом её разработчик ни был. Поэтому, нравится это вам или нет, пользоваться отладчиком вам всё равно придётся. Жизнь заставит. И чем больше времени вы сейчас потратите на изучение работы с ним, тем больше времени это вам сэкономит в дальнейшем.

Мы рассмотрим отладчик GDB, входящий в комплект программ GNU.

Для того, чтобы им пользоваться, нужно сначала скомпилировать программу так, чтобы её двоичный файл содержал отладочную информацию. Эта информация включает в себя, в частности, описание соответствий между адресами исполняемого кода и строками в исходном коде.

Такая компиляция достигается путём добавления флага -g к команде на компиляцию. Например, если бы мы собирали программу kalkul без применения Makefile, мы бы дали такую команду:

g++ main.cpp problem.cpp -o kalkul -g

Если же мы пользуемся командой make, то надо поставить опцию CFLAGS=-g. Тогда все команды на компиляцию, содержащиеся в Make-файле, автоматически получат флаг -g.

Давайте возьмём программу, которую мы создали из файлов main.cpp, problem.cpp и problem.h (мы тогда называли этот каталог проекта kalkulcpp). У нас Makefile уже сформирован. Воспользуемся им.

Очистим пакет от результатов предыдущей сборки.

Соберём программу снова, но уже с включением отладочной информации.

Запустим отладчик GDB, загрузив в него нашу программу для отладки. (Если помните, исполняемая программа у нас находилась в каталоге src.)

gdb ./src/kalkul

Чтобы запустить программу внутри отладчика,даётся команда run.

Чтобы посмотреть исходный код, даётся команда list.

Если дать эту команду без параметров, то она первые девять строк исходного кода главного файла (то есть такого, в котором имеется функция main). Чтобы просматривать файл дальше, надо снова набирать list. Чтобы посмотреть конкретные строки, надо указать два параметра: с какой строки начинать просмотр, и с какой строки заканчивать.

Чтобы просмотреть другие файлы проекта, надо перед номерами строк указать название нужного файла и отделить его от номеров строк двоеточием.

list problem.cpp:20,29

Поставим точку останова на строке номер 21. Точка останова - это метка, указывающая, что программа, дойдя до этого места, должна остановиться.

list problem.cpp:20,27

Посмотреть, где вы поставили точки останова, можно с помощью команды info breakpoints.

info breakpoints

(При желании можно вместо номера строки указать название функции,тогда программа остановится перед входом в функцию.)

Запустим программу.

Введём первое число 5 и знак математического действия « + ». Программа дойдёт до точки останова и остановится, выведя нам строку, у которой эта точка расположена.

Нам, конечно, интересно знать,в каком именно месте мы остановились, и что программа уже успела выполнить. Даём команду backtrace.

Отладчик выдаёт нам следующую информацию:

#0 CProblem::Calculate (this=0x804b008) at problem.cpp:21

#1 0x08048e00 in CProblem::Solve (this=0x804b008) at problem.cpp:93

#2 0x08048efc in main () at main.cpp:15

Это означается, что мы находимся внутри выполняющейся функции Calculate, являющейся функцией-членом класса CProblem. Она была вызвана из функции Solve того же класса, а та, в свою очередь, из функции main. Таким образом, команда backtrace показывает весь стек вызываемых функций от начала программы до текущего места.

Посмотрим, чему же равно на этом этапе значение переменной Numeral.

И нам сразу выводится число 5, которое мы и вводили в программу. (Значение, введённое нами с клавиатуры, присвоилось именно этой переменной.)

Если мы вместо print будем пользоваться командой display, то величина этой переменной будет показываться каждый раз, когда программа останавливается, без специального указания.

Добавим ещё одну точку останова на строке 25 файла problem.cpp.

break problem.cpp:25

Продолжим выполнение программы.

Команда Continue продолжает выполнение программы с текущего адреса. Если бы мы набрали run, программа начала бы выполняться с начала. Поскольку на строке 24 имеется команда cin >> SecondNumeral, то нам придётся ввести второе слагаемое. Введём, например,число 2. После этого программа опять остановится на строке 25 (наша вторая точка останова).

Посмотрим, чему равны значения наших переменных Numeral, SecondNumeral и Operation. Если вы помните, именно такие переменные мы объявляли в классе CProblem.

print SecondNumeral

У нас получится 5, « + », 2. Так и должно быть. Но давайте теперь «передумаем» и лучше присвоим переменной SecondNumeral значение 4. Отладчик GDB позволяет прямо во время выполнения программы изменить значение любой переменной.

set SecondNumeral=4

Если не верим, что её значение изменилось,можно проверить.

print SecondNumeral

Теперь мы ожидаетм, что результат будет 9. Давайте выполним программу до конца.

Результат действительно равен 9.

Давайте теперь уберём наши точки останова. Мы, кажется, создали две таких точки. Но это можно проверить.

info breakpoints

Удалим их.

Унас не должно остаться ни одной точки останова. Проверяем.

info breakpoints

Действительно не осталось ни одной.

Теперь давайте пошагово пройдём всю программу (благо, она у нас небольшая).

Поставим точку останова на десятой строке главного файла.

break main.cpp:10

Запустим программу

Дойдя до десятой строчки, она остановится. Теперь проходим её, останавливаясь на каждой строчке, с помощью команды step.

Чтобы не набирать каждый раз s-t-e-p, можно просто вводить букву s. Как только программа доходит до команды Problem->SetValues(), она сразу переходит в файл problem.cpp, где находится определение функции-члена CProblem::SetValues() и проходит код этой функции. То же самое, когда она дойдёт до вызова Problem->Solve().

Чтобы при вызове функции, программа не входила в неё, а продолжала дальше выполняться только на текущем уровне стека, вместо step даётся команда next или просто n.

Таким образом, можно просмотреть, как выполняется вся программа или любой участок программы. На любом шаге можно проверять значение любой переменной. Чтобы перестать проходить программу по шагам и запустить её до конца, надо дать команду continue.

Дадим короткий список наиболее часто встречающихся команд отладчика GDB. За более подробной информацией вы, конечно, всегда можете обратиться к встроенному описанию программы (info gdb) или руководством по пользованию (man gdb).

backtrace - выводит весь путь к текущей точке останова, то есть названия всех функций, начиная от main(); иными словами, выводит весь стек функций;

break - устанавливает точку останова; параметром может быть номер строки или название функции;

clear - удаляет все точки останова на текущем уровне стека (то есть в текущей функции);

continue - продолжает выполнение программы от текущей точки до конца;

delete - удаляет точку останова или контрольное выражение;

display - добавляет выражение в список выражений, значения которых отображаются каждый раз при остановке программы;

finish - выполняет программу до выхода из текущей функции; отображает возвращаемое значение,если такое имеется;

info breakpoints - выводит список всех имеющихся точек останова;

info watchpoints - выводит список всех имеющихся контрольных выражений;

list - выводит исходный код; в качестве параметра передаются название файла исходного кода, затем, через двоеточие, номер начальной и конечной строки;

next - пошаговое выполнение программы, но, в отличие от команды step, не выполняет пошагово вызываемые функции;

print - выводит значение какого-либо выражения (выражение передаётся в качестве параметра);

run - запускает программу на выполнение;

set - устанавливает новое значение переменной

step - пошаговое выполнение программы;

watch - устанавливает контрольное выражение, программа остановится, как только значение контрольного выражения изменится;

Дмитрий Пантелеичев (dimanix2006 at rambler dot ru) - Знакомство с отладчиком gdb

Для эффективной отладки программы, при компиляции вы должны сгенерировать отладочную информацию. Эта отладочная информация сохраняется в объектном файле; она описывает тип данных каждой переменной или функции, и соответствие между номерами строк исходного текста и адресами в выполняемом коде.

Чтобы запросить генерацию отладочной информации, укажите ключ `-g" при запуске компилятора.

Многие компиляторы Си не могут обрабатывать ключи `-g" и `-O" вместе. Используя такие компиляторы, вы не можете создавать оптимизированные выполняемые файлы, содержащие отладочную информацию.

GCC, GNU компилятор Си, поддерживает `-g" с или без `-O" , делая возможным отладку оптимизированного кода. Мы рекомендуем, чтобы вы всегда использовали `-g" при компиляции программ. Вы можете думать, что ваша программа правильная, но нет никакого смысла испытывать удачу.

Если вы запускаете вашу программу в среде выполнения, поддерживающей процессы, run создает подчиненный процесс, и этот процесс выполняет вашу программу. (В средах, не поддерживающих процессы, run выполняет переход на начало вашей программы.)

Выполнение программы зависит от определенной информации, которую она получает от породившего ее процесса. GDB предоставляет способы задать эту информацию, что вы должны сделать до запуска программы. (Вы можете изменить ее после старта, но такие изменения воздействуют на вашу программу только при следующем запуске.) Эта информация может быть разделена на четыре категории: Параметры. Задайте параметры, которые нужно передать вашей программе, как параметры команды run . Если на вашей системе доступна оболочка, она используется для передачи параметров, так что при их описании вы можете использовать обычные соглашения (такие как раскрывание шаблонов или подстановка переменных). В системах Unix, вы можете контролировать, какая оболочка используется, с помощью переменной среды SHELL . См. раздел 4.3 Аргументы вашей программы . Среда. Обычно ваша программа наследует свою среду от GDB, но вы можете использовать команды GDB set environment и unset environment , чтобы изменить часть настроек среды, влияющих на нее. См. раздел 4.4 Рабочая среда вашей программы . Рабочий каталог. Ваша программа наследует свой рабочий каталог от GDB. Вы можете установить рабочий каталог GDB командой cd . См. раздел 4.5 Рабочий каталог вашей программы . Стандартный ввод и вывод. Обычно ваша программа использует те же устройства для стандартного ввода и вывода, что и GDB. Вы можете перенаправить ввод и вывод в строке команды run , или использовать команду tty , чтобы установить другое устройство для вашей программы. См. раздел 4.6 Ввод и вывод вашей программы . Предупреждение: Хотя перенаправление ввода и вывода работает, вы не можете использовать каналы для передачи выходных данных отлаживаемой программы другой программе; если вы попытаетесь это сделать, скорее всего GDB перейдет к отладке неправильной программы.

Когда вы подаете команду run , ваша программа начинает выполняться немедленно. См. раздел 5. Остановка и продолжение исполнения , для обсуждения того, как остановить вашу программу. Как только ваша программа остановилась, вы можете вызывать функции вашей программы, используя команды print или call . См. раздел 8. Исследование данных .

Если время модификации вашего символьного файла изменилось с того момента, когда GDB последний раз считывал символы, он уничтожает свою символьную таблицу и считывает ее заново. При этом GDB старается сохранить ваши текущие точки останова.

4.3 Аргументы вашей программы

Первое, что GDB делает после подготовки к отладке указанного процесса--останавливает его. Вы можете исследовать и изменять присоединенный процесс всеми командами GDB, которые обычно доступны, когда вы запускаете процессы с помощью run . Вы можете устанавливать точки останова; вы можете пошагово выполнять программу и продолжить ее обычное выполнение, вы можете изменять области данных. Если вы решите продолжить выполнение процесса после присоединения к нему GDB, вы можете использовать команду continue . detach Когда вы закончили отлаживать присоединенный процесс, для его освобождения из под управления GDB вы можете использовать команду detach . Отсоединение процесса продолжает его выполнение. После команды detach , этот процесс и GDB снова становятся совершенно независимыми, и вы готовы присоединить или запустить с помощью run другой процесс. detach не повторяется, если вы нажмете RET еще раз после выполнения команды.

Если вы выйдете из GDB или используете команду run , пока у вас есть присоединенный процесс, вы убьете этот процесс. По умолчанию, GDB запрашивает подтверждение, если вы пытаетесь сделать одну из этих вещей; вы можете контролировать, нужно вам это подтверждение или нет, используя команду set confirm (см. раздел 15.6 Необязательные предупреждения и сообщения).

4.8 Уничтожение дочернего процесса

kill Уничтожить дочерний процесс, в котором ваша программа выполняется под управлением GDB.

Эта команда полезна, если вы хотите отладить дамп памяти, а не выполняющийся процесс. GDB игнорирует любые дампы памяти, пока ваша программа выполняется.

В некоторых операционных системах, программа не может быть выполнена вне GDB, пока у вас есть в ней точки останова, установленные отладчиком. В этой ситуации вы можете использовать команду kill , чтобы разрешить выполнение вашей программы вне отладчика.

Команда kill также полезна, если вы хотите перекомпилировать и перекомпоновать вашу программу, так как во многих системах невозможно модифицировать исполняемый файл во время выполнения процесса. В этом случае, когда вы в следующий раз введете run , GDB заметит, что файл изменился, и заново прочитает символьную таблицу (стараясь при этом сохранить ваши точки останова).

Сегодня ты сделаешь еще один шаг в деле
изучения Linux систем. Я расскажу об основных
приемах при работе с gdb. Овладев ими ты сможешь понять, как работает любая программа, писать свои эксплоиты.

Вы, наверное, все слышали про такую вещь как отладчик, gdb – это и есть отладчик. GDB – GNU
Debugger. Это некое подобие SoftICE для Windows (для тех кто не знает – самый популярный и, на мой взгляд, вообще лучший отладчик), только под
Linux системы. Дело в том, что в сети не так уж много документов, которые демонстрируют работу этой вещи и в свое время я его осваивал сам. Итак,
в документе будут описаны базовые команды gdb. Все это будет показано на примере. А в качестве примера я решил взять ненужную прогу yes. Для тех, кто не знает – это программа просто выводит символ ‘y’ до бесконечности, для начала я решил научить ее выводить не этот символ, а строку ‘XAKEP’, хоть веселее будет.

Ну а теперь все по порядку. Сам отладчик запускается так:

Но можно вводить различные параметры, у нас это будет путь к исследуемой программе:

# gdb /usr/bin/yes

Можно исследовать core файлы, для этого нужно ввести следует ввести следующее:

# gdb /usr/bin/yes core

Еще может понадобится команда для просмотра содержимого регистров:

(gdb) info registers

либо так (сокращенный вариант)

Теперь рассмотрим как делать перехваты. Существуют
точки останова, точки перехвата и точки наблюдения. Более конкретно я бы хотел остановиться на точках останова. Их можно устанавливать на:

(gdb) break function - Остановить перед входом в функцию
(gdb) break *adress - Остановить перед выполнением инструкции по адресу.

После установок можно просмотреть все точки для этого воспользуйтесь командой:

(gdb) info break

А потом можно удалить эти точки:

(gdb) clear breakpoint - где break это название точки останова
(например, функция или адрес)

Очень необходимой вещью является возможность автоматического отображения различных значений при выполнении программы. Для этого существует команда display:

(gdb) display/format value , где format – это формат отображения, а value – само выражение которое нужно отобразить.

Для работы с отображением отведены следующие команды:

(gdb) info display - выдает инфу об отображениях
(gdb) delete num - где num – удалить элементы с индексом
num

Это был небольшой справочник по командам, чтобы понять основную идею.
Далее на примере хотелось бы продемонстрировать это и еще немного. И помните – здесь я дал лишь очень маленькую часть всех возможностей gdb, на самом деле у него их в сотни раз больше, поэтому читайте и учите.
Как я и обещал, берем ненужную прогу yes. Путь на вашей машине может не совпадать с моим, все зависит от операционки которой вы пользуетесь, если что воспользуйтесь поиском (команда
find).

# gdb /usr/bin/yes

После запуска он говорит приветственное сообщение.

GNU gdb 19991004




There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux"...
(no debugging symbols found)...

Так как yes выводит бесконечное число символов, то лучше бы их нам не видеть в отладчике, а вывод
программы можно направить на другую консоль. Откройте новый терминал, наберите who is i и вы получите имя консоли. Должно вылезти
что-то вроде этого:

Вот теперь просто привязываем к ней.

(gdb) tty /dev/pts/1

А теперь ставим точку останова на функцию puts(), а чтобы было понятней вот вам man-справка об функции(команда man
puts)

#include
int puts(const char *s);
puts() writes the string s and a trailing newline to std­
out.

Как видно, функция посылаем строку s на поток вывода. Вот она то нам и нужна. На ней то мы пока и остановимся.

(gdb) break puts
Breakpoint 1 at 0x8048698

И запускаем саму программу, чтобы дождаться пока gdb не остановит ее выполнение на вызове функции.

(gdb) r
Starting program: /usr/bin/yes
Breakpoint 1 at 0x4006d585: file ioputs.c, line 32.

Breakpoint 1, 0x4006d585 in _IO_puts (str=0x8048e59 "y") at ioputs.c:32
32 ioputs.c: No such file or directory.
1: x/i $eip 0x4006d585 <_IO_puts+21>: mov 0x8(%ebp),%esi

О, вот и произошло чудо, сработал breakpoint. Что мы видим – а видим мы ни что иное, как параметр функции, точнее адрес, по которому он лежит. Что теперь нужно
сделать? Правильно, подправить данные по этому адресу. При этом мы затрем еще пару символов своими.

(gdb) set {char}0x8048e59="X"
(gdb) set {char}0x8048e5a="A"
(gdb) set {char}0x8048e5b="K"
(gdb) set {char}0x8048e5c="E"
(gdb) set {char}0x8048e5d="P"

Ну а теперь посмотрим на наше творение. Что там лежит в памяти:

(gdb) x/3sw 0x8048e59
0x8048e59 <_IO_stdin_used+437>: "XAKEP\004\b"
0x8048e61 <_IO_stdin_used+445>: ""
0x8048e62 <_IO_stdin_used+446>: ""

Теперь удалим наш брякпоинт:

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x4006d585 in _IO_puts at ioputs.c:32
breakpoint already hit 1 time
(gdb) clear puts
Deleted breakpoint 1

И продолжим выполнение чтобы насладится результатом:

Вот и все. Выходим.

(gdb) q
The program is running. Exit anyway? (y or n) y

На этом практика заканчивается, остальное изучайте сами и помните что главное в этой жизни – это УЧЕНЬЕ.
Вот еще некоторые примеры работы:

Присоединение к работающему процессу:

// launch gdb
hack@exploit:~ > gdb
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-suse-linux".
(gdb) attach "pid"
(gdb) attach 1127 // example

Поиск в памяти:

(gdb) x/d or x "address" show decimal
(gdb) x/100s "address" show next 100 decimals
(gdb) x 0x0804846c show decimal at 0x0804846c
(gdb) x/s "address" show strings at address
(gdb) x/105 0x0804846c show 105 strings at 0x0804846c
(gdb) x/x "address" show hexadecimal address
(gdb) x/10x 0x0804846c show 10 addresses at 0x0804846c
(gdb) x/b 0x0804846c show byte at 0x0804846c
(gdb) x/10b 0x0804846c-10 show byte at 0x0804846c-10
(gdb) x/10b 0x0804846c+20 show byte at 0x0804846c+20
(gdb) x/20i 0x0804846c show 20 assembler instructions at address

Список всех секций в исполняемом файле:

(gdb) maintenance info sections // or
(gdb) mai i s

Executable file:
`/home/hack/homepage/challenge/buf/basic", file type
elf32-i386.
0x080480f4->0x08048107 at 0x000000f4: .interp ALLOC

0x08048108->0x08048128 at 0x00000108: .note.ABI-tag
ALLOC LOAD READONLY DATA HAS_CONTENTS
0x08048128->0x08048158 at 0x00000128: .hash ALLOC
LOAD READONLY DATA HAS_CONTENTS
0x08048158->0x080481c8 at 0x00000158: .dynsym ALLOC
LOAD READONLY DATA HAS_CONTENTS
0x080481c8->0x08048242 at 0x000001c8: .dynstr ALLOC
LOAD READONLY DATA HAS_CONTENTS
0x08048242->0x08048250 at 0x00000242: .gnu.version
ALLOC LOAD READONLY DATA
HAS_CONTENTS

Бряк на адрес:

(gdb) disassemble main
Dump of assembler code for function main:
0x8048400

: push %ebp
0x8048401 : mov %esp,%ebp
0x8048403 : sub $0x408,%esp
0x8048409 : add $0xfffffff8,%esp
0x804840c : mov 0xc(%ebp),%eax
0x804840f : add $0x4,%eax
0x8048412 : mov (%eax),%edx
0x8048414 : push %edx
0x8048415 : lea 0xfffffc00(%ebp),%eax
...

(gdb) break *0x8048414 // example
Breakpoint 1 at 0x8048414
(gdb) break main // example
Breakpoint 2 at 0x8048409
(gdb)

Перевод статьи Аллана О’Доннелла Learning C with GDB .

Исходя из особенностей таких высокоуровневых языков, как Ruby, Scheme или Haskell, изучение C может быть сложной задачей. В придачу к преодолению таких низкоуровневых особенностей C, как ручное управление памятью и указатели, вы еще должны обходиться без REPL . Как только Вы привыкнете к исследовательскому программированию в REPL, иметь дело с циклом написал-скомпилировал-запустил будет для Вас небольшим разочарованием.

Недавно мне пришло в голову, что я мог бы использовать GDB как псевдо-REPL для C. Я поэкспериментировал, используя GDB как инструмент для изучения языка, а не просто для отладки, и оказалось, что это очень весело.

Цель этого поста – показать Вам, что GDB является отличным инструментом для изучения С. Я познакомлю Вас с несколькими моими самыми любимыми командами из GDB, и продемонстрирую каким образом Вы можете использовать GDB, чтобы понять одну из сложных частей языка С: разницу между массивами и указателями.

Введение в GDB

Начнем с создания следующей небольшой программы на С – minimal.c :

Int main() { int i = 1337; return 0; }
Обратите внимание, что программа не делает абсолютно ничего, и даже не имеет ни одной команды printf . Теперь окунемся в новый мир изучения С используя GBD.

Скомпилируем эту программу с флагом -g для генерирования отладочной информации, с которой будет работать GDB, и подкинем ему эту самую информацию:

$ gcc -g minimal.c -o minimal $ gdb minimal
Теперь Вы должны молниеносно оказаться в командной строке GDB. Я обещал вам REPL, так получите:

(gdb) print 1 + 2 $1 = 3
Удивительно! print – это встроенная команда GDB, которая вычисляет результат С-ного выражения. Если Вы не знаете, что именно делает какая-то команда GDB, просто воспользуйтесь помощью – наберите help name-of-the-command в командной строке GDB.

Вот Вам более интересный пример:

(gbd) print (int) 2147483648 $2 = -2147483648
Я упущу разъяснение того, почему 2147483648 == -2147483648 . Главная суть здесь в том, что даже арифметика может быть коварная в С, а GDB отлично понимает арифметику С.

Теперь давайте поставим точку останова в функции main и запустим программу:

(gdb) break main (gdb) run
Программа остановилась на третьей строчке, как раз там, где инициализируется переменная i . Интересно то, что хотя переменная пока и не проинициализирована, но мы уже сейчас можем посмотреть ее значение, используя команду print :

(gdb) print i $3 = 32767
В С значение локальной неинициализированной переменной не определено, поэтому полученный Вами результат может отличаться.

Мы можем выполнить текущую строку кода, воспользовавшись командой next :

(gdb) next (gdb) print i $4 = 1337

Исследуем память используя команду X

Переменные в С – это непрерывные блоки памяти. При этом блок каждой переменной характеризуется двумя числами:

1. Числовой адрес первого байта в блоке.
2. Размер блока в байтах. Этот размер определяется типом переменной.

Одна из отличительных особенностей языка С в том, что у Вас есть прямой доступ к блоку памяти переменной. Оператор & дает нам адрес переменной в памяти, а sizeof вычисляет размер, занимаемый переменной памяти.

Вы можете поиграть с обеими возможностями в GDB:

(gdb) print &i $5 = (int *) 0x7fff5fbff584 (gdb) print sizeof(i) $6 = 4
Говоря нормальным языком, это значит, что переменная i размещается по адресу 0x7fff5fbff5b4 и занимает в памяти 4 байта.

Я уже упоминал выше, что размер переменной в памяти зависит от ее типа, да и вообще говоря, оператор sizeof может оперировать и самими типами данных:

(gdb) print sizeof(int) $7 = 4 (gdb) print sizeof(double) $8 = 8
Это означает, что по меньшей мере на моей машине, переменные типа int занимают четыре байта, а типа double – восемь байт.

В GDB есть мощный инструмент для непосредственного исследования памяти – команда x . Эта команда проверяет память, начиная с определенного адреса. Также она имеет ряд команд форматирования, которые обеспечиваю точный контроль над количеством байт, которые Вы захотите проверить, и над тем, в каком виде Вы захотите вывести их на экран. В случае каких либо трудностей, наберите help x в командной строке GDB.

Как Вы уже знаете, оператор & вычисляет адрес переменной, а это значит, что можно передать команде x значение &i и тем самым получить возможность взглянуть на отдельные байты, скрывающиеся за переменной i :

(gdb) x/4xb &i 0x7fff5fbff584: 0x39 0x05 0x00 0x00
Флаги форматирования указывают на то, что я хочу получить четыре (4 ) значения, выведенные в шестнадцатеричном (hex ) виде по одному байту (b yte). Я указал проверку только четырех байт, потому что именно столько занимает в памяти переменная i . Вывод показывает побайтовое представление переменной в памяти.

Но с побайтовым выводом связана одна тонкость, которую нужно постоянно держать в голове – на машинах Intel байты хранятся в порядке “от младшего к старшему ” (справа налево), в отличии от более привычной для человека записи, где младший байт должен был бы находиться в конце (слева направо).

Один из способов прояснить этот вопрос – это присвоить переменной i более интересное значение и опять проверить этот участок памяти:

(gdb) set var i = 0x12345678 (gdb) x/4xb &i 0x7fff5fbff584: 0x78 0x56 0x34 0x12

Исследуем память с командой ptype

Команда ptype возможно одна из моих самых любимых. Она показывает тип С-го выражения:

(gdb) ptype i type = int (gdb) ptype &i type = int * (gdb) ptype main type = int (void)
Типы в С могут становиться сложными , но ptype позволяет исследовать их в интерактивном режиме.

Указатели и массивы

Массивы являются на удивление тонким понятием в С. Суть этого пункта в том, чтобы написать простенькую программу, а затем прогонять ее через GDB, пока массивы не обретут какой-то смысл.

Итак, нам нужен код программы с массивом array.c :

Int main() { int a = {1, 2, 3}; return 0; }
Скомпилируйте ее с флагом -g , запустите в GDB, и с помощь next перейдите в строку инициализации:

$ gcc -g arrays.c -o arrays $ gdb arrays (gdb) break main (gdb) run (gdb) next
На этом этапе Вы сможете вывести содержимое переменной и выяснить ее тип:

(gdb) print a $1 = {1, 2, 3} (gdb) ptype a type = int
Теперь, когда наша программа правильно настроена в GDB, первое, что стоит сделать – это использовать команду x для того, чтобы увидеть, как выглядит переменная a “под капотом”:

(gdb) x/12xb &a 0x7fff5fbff56c: 0x01 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x7fff5fbff574: 0x03 0x00 0x00 0x00
Это означает, что участок памяти для массива a начинается по адресу 0x7fff5fbff56c . Первые четыре байта содержат a , следующие четыре – a , и последние четыре хранят a . Действительно, Вы можете проверить и убедится, что sizeof знает, что a занимает в памяти ровно двенадцать байт:

(gdb) print sizeof(a) $2 = 12
До этого момента массивы выглядят такими, какими и должны быть. У них есть соответствующий массивам типы и они хранят все значения в смежных участках памяти. Однако, в определенных ситуациях, массивы ведут себя очень схоже с указателями! К примеру, мы можем применять арифметические операции к a :

(gdb) print a + 1 $3 = (int *) 0x7fff5fbff570
Нормальными словами, это означает, что a + 1 – это указатель на int , который имеет адрес 0x7fff5fbff570 . К этому моменту Вы должны уже рефлекторно передавать указатели в команду x , итак посмотрим, что же получилось:

(gdb) x/4xb a + 1 0x7fff5fbff570: 0x02 0x00 0x00 0x00

Обратите внимание, что адрес 0x7fff5fbff570 ровно на четыре единицы больше, чем 0x7fff5fbff56c , то есть адрес первого байта массива a . Учитывая, что тип int занимает в памяти четыре байта, можно сделать вывод, что a + 1 указывает на a .

На самом деле, индексация массивов в С является синтаксическим сахаром для арифметики указателей: a[i] эквивалентно *(a + i) . Вы можете проверить это в GDB:

(gdb) print a $4 = 1 (gdb) print *(a + 0) $5 = 1 (gdb) print a $6 = 2 (gdb) print *(a + 1) $7 = 2 (gdb) print a $8 = 3 (gdb) print *(a + 2) $9 = 3
Итак, мы увидели, что в некоторых ситуациях a ведет себя как массив, а в некоторых – как указатель на свой первый элемент. Что же происходит?

Ответ состоит в следующем, когда имя массива используется в выражении в С, то оно “распадается (decay)” на указатель на первый элемент. Есть только два исключения из этого правила: когда имя массива передается в sizeof и когда имя массива используется с оператором взятия адреса & .

Тот факт, что имя a не распадается на указатель на первый элемент при использовании оператора & , порождает интересный вопрос: в чем же разница между указателем, на который распадается a и &a ?

Численно они оба представляют один и тот же адрес:

(gdb) x/4xb a 0x7fff5fbff56c: 0x01 0x00 0x00 0x00 (gdb) x/4xb &a 0x7fff5fbff56c: 0x01 0x00 0x00 0x00
Тем не менее, типы их различны. Как мы уже видели, имя массива распадается на указатель на его первый элемент и значит должно иметь тип int * . Что же касается типа &a , то мы можем спросить об этом GDB:

(gdb) ptype &a type = int (*)
Говоря проще, &a – это указатель на массив из трех целых чисел. Это имеет смысл: a не распадается при передаче оператору & и a имеет тип int .

Вы можете проследить различие между указателем, на который распадается a и операцией &a на примере того, как они ведут себя по отношению к арифметике указателей:

(gdb) print a + 1 $10 = (int *) 0x7fff5fbff570 (gdb) print &a + 1 $11 = (int (*)) 0x7fff5fbff578
Обратите внимание, что добавление 1 к a увеличивает адрес на четыре единицы, в то время, как прибавление 1 к &a добавляет к адресу двенадцать.

Указатель, на который на самом деле распадается a имеет вид &a :

(gdb) print &a $11 = (int *) 0x7fff5fbff56c

Заключение

Надеюсь, я убедил Вас, что GDB – это изящная исследовательская среда для изучения С. Она позволяет выводить значение выражений с помощью команды print , побайтово исследовать память командой x и работать с типами с помощью команды ptype .

1. Используйте GDB для работы над The Ksplice Pointer Challenge .
2. Разберитесь, как структуры хранятся в памяти. Как они соотносятся с массивами?
3. Используйте дизассемблерные команды GDB, чтобы лучше разобраться с программированием на ассемблере. Особенно весело исследовать, как работает стек вызова функции.
4. Зацените “TUI” режим GDB, который обеспечивает графическую ncurses надстройку над привычным GDB. На OS X, Вам вероятно придется собрать GDB из исходников.

От переводчика: Традиционно для указания ошибок воспользуйтесь ЛС. Буду рад конструктивной критике.